

ADAPT
IST-2001-37126

Middleware Technologies for Adaptive and

Composable Distributed Components

Project funded by the
European Commission under the
Information Society Technologies
Programme of the 5th Framework

(1998-2002)

Service Specification Language

Deliverable Identifier: D6
Delivery Date: 19 September 2003
Classification: Public Circulation
Authors: Ricardo Jiménez-Peris, Marta Patiño-Martínez. Simon Woodman,

Santosh Shrivastava, Doug Palmer, Stuart Wheater, Bettina Kemme,
Gustavo Alonso.

Document version: 1.0 17 September 2003

Contract Start Date: 1 September 2002
Duration: 36 months
Project coordinator: Universidad Politécnica de Madrid (Spain)
Partners: Universitá di Bologna (Italy), ETH Zürich (Switzerland), McGill

University (Canada), Universitá degli Studi di Trieste (Italy),
University of Newcastle (UK), Arjuna Technologies Ltd. (UK)

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

Service Specification Language 1

CONTENTS

1. Introduction ……………………………………………………………………… 2
2. Web Service Description Language……………………………………………….3
3. Web Service Attributes Related to Transactional Semantics ……………………..5
4. Web Service Specification Related to Performance Properties…………………..15
5. Web Service Attributes Related to Interaction Constraints………………………16

References …………………………………………………………………………..58

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

Service Specification Language 2

1 Introduction

A web service can be either a basic service (BSs) or a composite service (CSs). BSs are
provided by a single organization while CSs can be inter-organizational and are made
up of BSs and other CSs. The composition of BSs and CSs into a new CS requires
specifying the properties of the constituent services in order to predict the properties of
the new service. This document deals with a language to specify web services in order
to ease the composition of CSs. The specification will cover both functional and non-
functional attributes. The description of functional attributes will follow the widely
accepted specification for the description of web services, web service description
language (WSDL) [1].

An important part of this document will be devoted to the identification of non-
functional aspects of services that will prove helpful to predict the properties of the CSs
built out of them. We are interested in enriching the specification of web services in
such a way that when they participate in a composition it becomes possible: 1) to find
out whether they provide the required functionality to participate in the composition;
and 2) the properties of the resulting composition are predictable.

We have identified three families of non-functional attributes that might be of interest
for compositions:

• Attributes related to transactional capabilities of web services.
• Attributes dealing with web service performance.
• Attributes regarding sequencing constraints on web service invocations

(conversations).

The first and the last set of attributes are static in the sense that their specification does
not change after deployment. It is useful to publish static attributes at deployment time.
This allows the CS to use the static attributes at composition time to derive the
properties of the composition. Performance values, like response times, throughput, and
availability, however, change continuously during service execution, that is, they have a
dynamic nature. Hence, publishing the values of these dynamic attributes is not as
useful as publishing static attributes. However, dynamic attributes are useful at run-time
to choose the most appropriate service with respect to its actual performance. For this
reason, we will deal differently with the two kinds of attributes. For static attributes, we
will define specifications that will be published and then will be used for building
compositions. Dynamic attributes, as part of a service, will be associated with an
operation. The CS can call this operation whenever it wants to know the current
performance values of the web-service. This will help the CS to select a basic service at
run-time.
In the following we assume that the web service is provided by a BS and implemented
by a middleware or application server.

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

Service Specification Language 3

2 Web Service Description Language

WSDL has become a de facto standard for the specification of web services. WSDL is
both language and platform independent and is defined as an XML grammar. The
current version of the language is WSDL 1.1, and WSDL 1.2 is being drafted at this
time. In what follows, we will use the terminology as it is in WSDL 1.1.

A WSDL document defines web services as a collection of endpoints operating on
messages. The operations and messages are described abstractly to favor reusability,
and then, they are linked to a concrete protocol and data format.

Services in WDSL are defined using the following elements:

• types: provide data type definitions used to describe the messages exchanged.
• message: abstract definition of the data exchanged .
• portType: a set of abstract operations and the messages involved.
• binding: specifies a concrete protocol and data format for a portType.
• port: an address for a binding (endpoint).
• service: set of related ports.

Message definitions consist of one or more message parts, being each part associated
with a type. Port types aggregate messages into collections of operations.

An endpoint can support four transmission primitives:

• One-way. The endpoint receives a message.
• Request-response. The endpoint receives a message and replies with a correlated

message.
• Solicit-response. The endpoint sends a message, and receives a reply.
• Notification. The endpoint sends a message.

Two-way operations, request-response and solicit-response, take an input message and
if they finish successfully, they return an output message. Notification operations just
specify an output message. WSDL currently only defines bindings for one-way and
request-response transmission primitives.

Each operation can define fault elements which specify the message format for error
messages. Error messages are returned as the output of an operation in case it fails. A
fault message can be considered as an exceptional termination that might have an
associated value.

Once the abstract part of a service has been defined in terms of port types, operations
and messages, its concrete part is defined with the help of bindings. A binding defines
the message format and protocol details for the operations and messages of each
particular port type. Then, ports define an individual endpoint by associating a concrete
address to a binding. Services are used to aggregate a set of ports together.

In the next section we will discuss transactional attributes. We first describe their
semantics and then show how they can be specified via WSDL. Section 4 discusses how
performance related information can be published. Section 5 discusses in detail
attributes regarding sequencing constraints.

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

Service Specification Language 4

3 Web Service Attributes Related to Transactional Semantics

One of the conclusions of the deliverable D5, Transactional Support, was that
traditional ACID transactions are not applicable in the composition of web services in
order to preserve the autonomy of the organizations that provide these services. The
main problem is the isolation property. A long lasting transactional composite service
can block the resources of the organizations providing the web-services for long periods
of time. However, the atomicity property is an essential property in all the advanced
transaction models suitable to be used for the composition of web services. This does
not mean that individual operations provided by a web service can not be executed as
ACID transactions. What is not suitable, in general, is to execute a CS as an ACID
distributed transaction.

3.1. Transactional Attributes

The goal of this section is to identify attributes that help to build transactional
compositions of web services. These attributes, given the above stated restrictions, will
be mainly related to atomicity.
Atomicity guarantees that all or none of the operations of a transaction are executed.
This means, that before a transaction commits, all participants must have enough
information on stable storage to reproduce the effects of a committed transaction in case
of failure (log redo information). Furthermore, each participant must be able to undo
already executed operations until it is secure that the transaction will commit. For that
purpose undo information must be logged. Such undo information can be physical
(containing the before-image of changed objects) or logical (containing the logical
reverse operation). Which kind of undo log will be used will depend on the transactional
attributes of the web-service.
The transactional-related attributes identified so far are:

• Isolated.
• Atomic.
• Conversational
• Coordinatable
• NonUpdate
• Retriable
• Idempotent
• Compensatable
• Testable

Important issue is how these attributes are implemented. Some of them can be enforced
internally by the application server in which the web service is deployed. For instance,
an EJB application server implementing the J2EE specification provides atomicity, and
all methods of beans deployed in the server can be specified as atomic. Other attributes
require help from the web-service provider. For instance, whether an operation is read-
only (NonUpdate) can only be determined by the programmer.
The first four attributes directly specify transactional properties. The second five
attributes are not directly related to atomicity, but they are useful for the CS level to

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

Service Specification Language 5

build atomic composite services. We would like to foresee that every web-service will
provide all attributes.
The attributes listed above are all applicable to the individual operations of a web
service. In the following, if it becomes clear from the context, we write “attribute of a
web-service” instead of “attribute of an operation of a web-service”. In the following,
we will look at each attribute individually. We fill first give a detailed descriptions of its
semantics. Then we outline how the property could be implemented. This discussion
does not attempt to be exhaustive but only sketches implementation alternatives.
Whenever it is interesting, we will also analyze how the different attributes are related
to each other.

3.1.1. Isolated Attribute

The isolated attribute indicates that a service provides some level of isolation. Well
known are the isolation levels for transactions. For instance, serializability isolation
guarantees that the effect of concurrent execution of transactions is equivalent to a serial
execution of them providing the illusion to the multiple users that their transactions
have been executed in the system without the interference of other users. Lower levels
of isolation have been proposed such as the ANSI isolation levels [13] or Oracle
snapshot isolation [22]. The ANSI isolation levels, in addition to serializable, are read
uncommitted, read committed or repeatable reads. The three of them provide increasing
levels of isolation all below serializability. The Oracle snapshot isolation lies
somewhere between the read committed and serializability isolation levels.

However, isolation levels can also be specified outside of the context of transactions.
For instance, linearizability [20] guarantees that concurrent invocations to a service are
equivalent to a serial execution of them. While serializability provides isolation at the
level of a sequence of invocations (i.e., transaction), linerizability provides isolation at
the level of an individual invocation.

In any case, the isolation property is provided by the application server hosting the web-
service, or by the web-service provider through special means. The client has no control
over the transaction/invocation.
For instance, EJB application servers following the J2EE specification, guarantee
transactional isolation. The service provider must enclose the whole service code within
a transaction and set the isolation level according to the isolated attribute. The
application server provides isolation by either relying on the concurrency control of the
underlying database systems (and disallowing any concurrent data access within the
beans implementing the business logic) or the server implements its own concurrency
control strategy (often following on optimistic concurrency control strategy).
Linearizability can be enforced by using short term concurrency control such as
mutexes. A service can be made linearizable by using in its code mutexes that protect
the access of shared data accessed by either another invocation to the same service or an
invocation to a different service.
The isolation attribute is used to specify any isolation properties of a transaction or
invocation. We suggest treating atomicity orthogonal to isolation. Some kinds of
services can require atomicity independently of isolation properties. For example, it
might be acceptable for a given service that two concurrent invocations observe
intermediate results of each other (no isolation required), but it must be guaranteed that

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

Service Specification Language 6

each of them is atomic (all-or-nothing-property required). In other cases, isolation might
not be a factor. For instance, stateful session beans of a J2EE always belong to a single
client, hence, there is never concurrent access.

3.1.2. Atomic Attribute

If a web-service operation provides the atomic attribute, then it is guaranteed that the
execution of the operation (including all sub-invocations triggered by this operation)
fulfills atomicity, i.e., either all or none of the data changes triggered by the operation
are successful. That is, the execution starting with the call to the operation and ending
with its return builds a single atomic unit. As with isolation, the client has no control
over the transaction. It is only informed that the entire operation was successful or
failed. How atomicity is implemented is transparent to the client.

As with isolation, the atomic property can either be guaranteed by the application server
hosting the web-service or by the web-service provider. The web-service provider can
provide atomicity of an operation by, e.g., carefully catching any exception and
logically undoing any effect executed so far. Many application servers implement a
transaction manager that supports atomicity, e.g., the EJB application servers following
the J2EE specification. The service provider simply needs to enclose the code of a
service within a transaction. In contrast, with the CORBA Object Transaction Service
[23], providing atomicity (recoverable objects) is a responsibility of the programmer of
the object.

It is our opinion that the atomic attribute will be essential for many services.

3.1.3. Conversational Attribute

The atomic attribute only provides atomicity within a single web-service call. The
transaction terminates before a return is given to the external caller. However, a CS
might want to combine several operations of the same web-service to a single
transaction. Web-services with such properties contain the conversational attribute.
In this case, the BS must provide a beginTransaction and endTransaction
operation. The CS must first call beginTransaction, then call a sequence of web-
service operations, and then terminate the transaction with endTransaction.

Many application servers (e.g., EJB servers) provide atomicity support for such
“conversations”. In case of a conversational transaction, the transaction manager has to
keep track of transaction context across web-service calls. Application servers who
support conversational transactions, are usually also able to put a single call into a
transaction. Therefore, a “conversational” web-service is usually also “atomic”.
In this case, the question arises which of the two attributes comes into effect at runtime.
When an operation is executed, should the corresponding transaction commit before
return or not? The behavior can be determined at the time of invocation. If the operation
is called without a transactional context, a new transaction is created solely for this
operation, and the atomic attribute comes into effect. When the operation is called
within a transactional context, the system is handling a conversational transaction.

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

Service Specification Language 7

3.1.4. Coordinatable Attribute

In some cases, it might be necessary to coordinate the execution of a set of web services
to provide atomicity guarantees across organizations. Such coordinated execution will
be based on one of any of the emerging specifications for transactional coordination,
such as BTP (Business Transaction Protocol) [17], WS-Transaction/WS-Coordination
[18][5][6], or the just disclosed WS-CAF specifications [19]. Services with this
coordination capability will include the coordinatable attribute. Services with this
attribute will exhibit an interface for participating in at least one coordination protocol
(e.g., two phase commit protocol) of one of the existing standards and/or specifications.
This interface will enable a service to participate in a distributed transaction. We assume
that a web service might either, require, allow or forbid the invocation of a web service
in a coordination context. By not exhibiting the coordinatable attribute, the web service
forbids its invocation within a coordination context. Otherwise, it is allowed. It can be
forced by indicating that the invocation within a coordination context is mandatory.
Finally, as part of this attribute the standards, family protocols and protocols supported
by the web service are indicated.

The ability to participate in an inter-organization transaction is usually provided by a
transaction manager that understands one or more web service transaction standards as
the one that will be developed in deliverable D4 Transactional engine. The transaction
manager has to implement the participant part of the coordination protocol. So far, not
many EJB application servers provide such feature. It has to be seen whether it is
possible to implement an independent transaction manager that is responsible only for
the coordination. This manager must cooperate with the transaction manager of the
application server in order to control the transactions. It might be necessary to adjust
and/or extend the original transaction manager of the application server.

Usually, a web-service that provides the coordinatable attribute will also provide the
atomic and conversational attributes. In particular, this will be the case when the
coordinatable attribute specifies a coordination protocol that decides about the outcome
of a transaction (in most cases a 2-Phase-Commit protocol). In such case, the web-
service gives up its right to decide independently whether to commit a transaction. This
has two implications. First, the web-service obviously must provide mechanisms to
abort and commit the effects of involved operations. This is equivalent to the atomic
attribute. Furthermore, it must keep transactional context across system calls since it
cannot commit when it returns the result of an operation but must wait for the final
decision. This makes the service implicitly conversational.
In general, however, a coordinatable attribute could also specify some other form of
coordination that is not related to transactions and/or atomicity. In this case, it is
independent of the atomic and conversational attributes.

3.1.5. NonUpdate Attribute

The NonUpdate attribute states that a service does not change the application state. In
this category, we find two kinds of services: services that only perform read operations,
and services that do not have a relevant effect on the server with respect to other service
invocations. For instance, a login operation might have an effect on the server, like

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

Service Specification Language 8

saving the username with a timestamp in a log file. However, its execution is not
relevant to other clients of the service, since its invocation does not change data that
other clients access.

This attribute states a property of a specific operation. As such, this property must
probably be specified by the service provider. Only in seldom cases will the application
server be able to detect that an operation obeys the NonUpdate rules.

3.1.6. Retriable Attribute

Service invocations can fail due to different circumstances, such as, loss of messages,
server overload, server crashes, etc. In the advent of such scenarios, an important
attribute of a service is the possibility of retrying the invocation and guaranteeing its
successful execution after a finite number of invocations. Such services will be tagged
with the Retriable attribute. It should be highlighted that a retriable service has to
guarantee that it will succeed eventually (i.e., when all failures like message loss, crash,
overload etc. are repaired). Therefore, services like a hotel reservation might not be
retriable, since there is no guarantee of success. For instance, the hotel might become
fully booked. On the other hand, a service that asks for the availability of a room at a
hotel might be retriable.

This attribute expresses a semantic property of a service, and as such must be provided
by the implementation of the service. Therefore, it is one of the properties to be
identified by the programmer of the service.

3.1.7. Idempotent Attribute

If a client can call the same web-service operation twice but the result on the server is as
if at most one of the executions has taken place, then the operation should be tagged
with the idempotent attribute.
Generally, this property is part of the semantics of the service and the programmer
should identify it. However, it is possible to provide some support in the application
server to guarantee idempotence in a seamless way. The application server can identify
invocations in such a way that it can discard duplicates, therefore, enforcing
idempotence. This requires support both at the client and server sides. On the client
side, the proxy should identify invocations uniquely. That is, if an invocation is resent,
it will be tagged with the same identifier as the first submitted invocation. On the server
side, duplicates can be filtered based on the invocation identifiers.

This makes clear that idempotence is different from retriable. A purchase order with a
unique identifier might be idempotent (that is, it will not be processed twice), but not
retriable (the price of the items might change or might not be available any more).

3.1.8. Compensatable Attribute

Service operations that exhibit the Compensatable attribute can be undone logically by
executing a compensating operation that reverses logically their effect. In this fashion,

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

Service Specification Language 9

atomicity can be enforced by undoing the effect of a previously invoked operation. The
difference between compensatable and atomic ones comes from the fact that a
compensatable operation must be compensated by the client (by calling the
compensating operation) while undoing the effects of an aborting atomic operation is
transparent to the client. Atomic operations are automatically aborted by the server
implementing the service in case a failure happens.

Whenever an operation of a web service is tagged as compensatable, the service
provider must provide a compensating operation to reverse it. The parameters of the
compensating service should be linked by the programmer to the (input or output)
parameters of the compensatable operation. Only in seldom cases might the application
server be able to automatically generate a compensating operation.

3.1.9. Testable Attribute

Web-service operations might be tagged with the Testable attribute. This attribute
indicates that after executing an operation, it is possible to invoke a special operation to
find out whether the testable operation executed successfully. This is useful in situations
in which the communication can be lost and there is uncertainty about the success or
failure of the service invocation.

In some situations, the application server can provide support for this attribute in a
similar way as was suggested for the idempotence attribute. The server can tag
messages at the client proxy with unique identifiers. If the server executes invocations
within a transactional context, then it can also register this identifier in a special table
where completed operations are registered. A testing service would be provided so that
given the identifier of an operation one can check whether the operation was executed
successfully or not. In the absence of this support from the application server, the
programmer can always provide a similar functionality within the business logic. There,
for each testable operation, a test-operation must be implemented, that, given the
identifier of an invocation of the testable operation, determines whether the invocation
was successful or not.

3.1.10. Summary

With the first four attributes, the transactional properties are provided to different
degrees internally by the web-service. The client can directly take advantage of these
transactional properties, and their implementation is transparent to the client.
The second set of attributes, in contrast, does not directly support transactional
properties. However, the attributes can help the client, i.e., the CS, to provide atomicity
at the CS level by exploiting the special properties of the web-services. For instance, if
the CS wants to call a series of operations, such that some of these operations are
compensatable, some are retriable and one is atomic, then it can follow the FLEX
transaction model [24-26], and first call all compensatable, then the atomic, and then the
retriable operations.

One can argue that some of the transactional attributes are not non-functional. For
instance, the conversational attribute requires the specification of a compensating

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

Service Specification Language 10

operation. This operation reflects semantics of the application (and must be provided by
the application programmer). The compensating operation might not even exactly
restore the system to the state before the execution of the original operation (it only
logically undoes the effect but does not restore a before-image). Other attributes might
also be considered functional since they expose information about the semantics of the
operation (e.g., NonUpdate). However, we believe that it is of advantage for CS
developers if all attributes that help to enforce transactional attributes are specified and
handled in a similar way (whether they are non-functional or have a tendency to be
functional).

3.2. Specification and Publication of Transactions Attributes

Transactional and other non-functional attributes of web services need to be defined in
an interoperable way and published. So, when an organization uses some of these web
services, it can locate these specifications and then, find out whether they are suitable
for the targeted task. For interoperability purposes, XML is becoming a de facto
standard. Regarding the publication of this specification, two different issues need to be
considered: a) where this document is published, so it can be located by a potential user;
b) in which document transactional attributes are included.

UDDI repositories [15] are becoming the standard way of publishing web services. A
UDDI repository allows publishing and searching web services in a standard way
(through well defined APIs). Records in a UDDI repository hold information about the
business, as well as technical information such as, bindingTemplates that provide access
points to services and tModels that provide links to technical specifications of services.
There is a tModel, the wsdlSpec tModel, that points to the WSDL specification of a web
service. But it is also possible to include new kinds of tModels that, for instance, could
be useful to point to the specification of non-functional attributes.

There are two options for where to specify non-functional attributes. One option is to
include them in the WSDL specification of the service by taking advantage of the
WSDL extensibility elements. Another possibility consists in using a separate XML
document that specifies the non-functional attributes of the operations of a given web-
service. The tModel of this web service (residing in the UDDI registry) can point to this
XML document. We will adopt the first option since it seems simpler (it does not need
to reference operations from a different document). Moreover, the second option does
not offer any additional advantage.

In the following, we first discuss the specification of the attributes and then describe
how the services can be published in a UDDI repository.

3.2.1. Specifying Transactional Attributes through WSDL

Extensible Elements

Extensibility elements are placeholders for elements from other namespaces. They are
allowed at particular points of a WSDL document. In particular in WSDL 1.1, the
current available specification, the extensibility elements can be placed at the type

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

Service Specification Language 11

definition, at the operation definition in the binding section and at the port definition in
the service section.

Since the attributes we are concerned with apply to operations, the only option with the
current specification is to include the description of non-functional attributes in the
binding section. It seems that it would be more appropriate to locate them in the
portType section, since the non-functional attributes do not depend on bindings.
Fortunately, the current draft of WSDL (WSDL 1.2) contemplates extensibility of
portTypes, filling the missing functionality in the current version of WSDL. In what
follows we will assume that portTypes are extensible.

Most of the presented transactional attributes can be specified by using a keyword to tag
the corresponding operation. However, some of them need to refer to another operation.
For instance, when an operation is defined as compensatable, there must be an
associated compensating operation and an indication of which parameters from the
operation to be compensated should be passed to the compensating operation. The
testable attribute also needs to refer to a test operation. This is necessary since the
testable attribute states that the successful completion of an operation can be tested by
means of a test operation. In what follows we describe the XML schema for these
attributes.

We will adopt the following namespace prefix for describing the different quality of
service attributes.

xmlns:txn=http://www.adapt.eu.int/wsdl/txn

The attributes that do not need to be completed with another operation are modeled with
a single keyword:

<xsd:simpleType name="SimpleTransAttributeName">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="Atomic"/>
 <xsd:enumeration value="NonUpdate"/>
 <xsd:enumeration value="Retriable"/>
 <xsd:enumeration value="Idempotent"/>
 </xsd:restriction>
</xsd:simpleType>

<xsd:complexType name="SimpleTransAttribute">
 <xsd:element name="TransAttributeName"
 type="SimpleTransAttributeName">
</xsd:complexType>

The isolated attribute has a companion string that indicates the isolation level provided
by the service. The isolation levels we have identified are enumerated in the following
XML type:

<xsd:simpleType name="IsolationLevel">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="Linearizable"/>
 <xsd:enumeration value="ReadUncommitted"/>
 <xsd:enumeration value="ReadCommitted"/>

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

Service Specification Language 12

 <xsd:enumeration value="RepeatableRead"/>
 <xsd:enumeration value="SnapshotIsolation"/>
 <xsd:enumeration value="Serializable"/>
 </xsd:restriction>
</xsd:simpleType>

With this, the definition of the isolated attribute is then as follows:

<xsd:complexType name="IsolatedAttribute">
 <xsd:attribute name="mandatory" type="IsolationLevel"
 default="Serializable">
</xsd:complexType>

The coordinatable attribute is a special case since it has attached a list of accepted
coordination protocols. The accepted coordination protocols will be referred by a list of
three strings (for instance, a string might be a namespace of a protocol):

• One string for the coordination standard (e.g., for WS-Transaction:
http://schemas.xmlsoap.org/ws/2002/08/wstx).

• Another string for the protocol familiy (e.g., for business activity:
http://schemas.xmlsoap.org/ws/2002/08/2002/wsba).

• And another one for the particular protocol within the family (e.g.
businessAgreementWithComplete).

The definition of the coordinatable attribute is as follows:

<xsd:complexType name="CoordinatableAttribute">
 <xsd:sequence>
 <xsd:element name="CoordStandard" type="xsd:string"/>
 <xsd:element name="CoordFamily" type="xsd:string"/>
 <xsd:element name="CoordProtocol" type="xsd:string"/>
 </xsd:sequence>
 <xsd:attribute name="mandatory" type="xsd:boolean" default="false">
</xsd:complexType>

Furthermore, the compensatable attributes need to associate the tagged operation with
another operation whose parameters depend on the parameters of the operation tagged
with the attribute. A compensatable operation must specify which operation should be
invoked to undo its effect. That is, the invocation of the compensatable operation and its
compensating operation must be correlated. The way in which we model this correlation
is by associating some of the (input or output) parameters of the compensatable
operation to the compensating operation. For instance, to compensate a hotel room
booking operation there must be a compensating operation (CancelRoomBooking)
as well as list of parameters (for instance, a reservation number) that correlate the
cancellation with the reservation. This list of parameters will be parameter names of the
input and output messages of the operation to be compensated.
Similar holds for the testable attribute if there exists a test-operation for each testable
operation.

These two attributes are defined as follows:

<xsd:simpleType name="ComplexTransAttributeName">

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

Service Specification Language 13

 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="Compensatable"/>
 <xsd:enumeration value="Testable"/>
 </xsd:restriction>
</xsd:simpleType>

<xsd:simpleType name="ParameterList">
 <xsd:list itemType="xsd:string">
</xsd:simpleType>

<xsd:complexType name="MsgTransAttribute">
 <xsd:sequence>
 <xsd:element name="MessageName" type="xsd:string">
 <xsd:element name="MessageParameters type="ParameterList">
 </xsd:sequence>
</xsd:complexType>

<xsd:complexType name="ComplexTransAttribute">
 <xsd:sequence>
 <xsd:element name="TransAttributeName”
 type="txn:ComplexTransAttributeName”>
 <xsd:element name="AssociatedMsg" type="MsgTransAttribute">
 </xsd:sequence>
</xsd:complexType>

Finally the attributes are defined by the TransAttribute type.

<xsd:simpleType name="TransAttribute">
 <xsd:union memberTypes="SimpleTransAttribute
 CoordinatableAttribute ComplexTransAttribute">
</xsd:simpleType>

Each operation of a web service can have a list of attributes defined as:

<xsd:simpleType name="TransAttributeList">
 <xsd:list itemType="TransAttribute">
</xsd:simpleType>

Examples

The following example shows how an operation, BuyOrder, exhibits two simple
attributes (Atomic and Idempotent):

<portType name="BuyOrderPortType">
 <operation name="BuyOrder">
 <input message=...>
 <output message=...>
 <txn:TransAttributeList>
 <txn:SimpleTransAttribute Atomic />
 <txn:SimpleTransAttribute Idempotent />
 </txn:TransAttributeList>
 ...
 </operation>
</portType>

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

Service Specification Language 14

The following example shows a Deposit operation in a bank branch that is a
Coordinatable (through the businessAgreement protocol from WS-Transactions),
atomic and serializable service that requires to be invoked in a coordination context:

<portType name="BankBranch">
 <operation name="Deposit">
 <input message=...>
 <output message=...>
 <txn:TransAttributeList>
 <txn:IsolatedAttribute Serializable />
 <txn:SimpleTransAttribute Atomic />
 <txn:CoordinatableAttribute>
 <txn:CoordStandard>
 “http://schemas.xmlsoap.org/ws/2002/08/wscoor"
 <txn:CoordStandard/>
 <txn:CoordFamily>
 "http://schemas.xmlsoap.org/ws/2002/08/2002/wsba"
 <txn:CoordFamily />
 <txn:CoordProtocol>
 "businessAgreementWithComplete"
 <txn:CoordProtocol/>
 </txn:CoordinatableAttribute>
 </txn:TransAttributeList>
 </operation>
</portType>

The hotel room booking operation (BookRoom) is defined as atomic, serializable and
Compensatable. Let us assume that as part of the output message of that operation a
BookingReferenceNumber is returned. The CancelRoomBooking operation is the
compensating operation for BookRoom, and BookingReferenceNumber is used as
input parameter of this operation.

<portType name="Hotel">
 <operation name="BookRoom">
 <input message=...>
 <output message=...>
 <txn:TransAttributeList>
 <txn:IsolatedAttribute Serializable />
 <txn:SimpleTransAttribute Atomic />
 <txn:ComplexTransAttribute>
 <txn:TransAttribute Compensatable />
 <txn:AssociatedMsg>
 <txn:MessageName CancelRoomBooking />
 <txn:MessageParams BookingReferenceNumber />
 </txn:AssociatedMsg>
 </txn:ComplexTransAttribute>
 </txn:TransAttributeList>
 </operation>
</portType>

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

Service Specification Language 15

3.3. Publishing Transactional Attributes in UDDI Repositories

A UDDI repository allows the publication of web services as XML data models. The
data model has four parts:

• the businessEntity describes the information about the company, contacts,
business description, etc.

• the businessService includes information about one or more web services.
• the bindingTemplate provides information about how and where a web service

can be accessed.
• tModel stands for technical model and provides links to the technical

specifications of a service.

One of the recommended uses of the tModel element is precisely to reference to the
WSDL description of a web service [16]. In particular, the wsdlSpec tModel is targeted
to include the URL to the WSDL specification of the service in its overviewURL
field. In the ADAPT project we will follow this recommendation. The WSDL document
will contain the attributes of the operations of the published web service. Another
possibility would have been to include the transactional specification as a separate
document and define a new kind of tModel, TxnSpec tModel, to reference it.

Some authors [14] have recently proposed the inclusion of non-functional, e.g., QoS
information, as separate elements (blue pages) in the UDDI service description. This
approach has the benefit of being able to use QoS attributes as part of a web service
search. However, the main shortcoming of the proposed approach is that it is not (yet)
standard. Hence, we do not follow this approach in this paper. However, we believe that
if such an approach should become standard, then our specification can be easily
adjusted to the new format.

4 Web Service Specification Related to Performance

Properties

As discussed in Section 1, performance properties have a dynamic nature. If we include
performance properties as part of the specification, then we would have to update the
specification whenever such properties change. We believe that the current specification
format, as well as UDDI implementations, do not support well frequent changes. Even
when we change the specification within short time intervals, the published information
will never reflect the exact situation at the web-service. Also, CS might cache
specifications, and hence, either the cached versions must be invalidated or the CS must
check on a regular basis whether their cached versions are still correct.

Hence we suggest that web-services make performance properties and other QoS
parameters accessible through special “performance” operations. The CS can call these
operations whenever it wants to have information about the current performance of the
web-service. Upon invocation, the operations can return very accurate information.
Here, we will describe the simplest approach that consists in defining a port type for
querying about any performance metric of any port operation:

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

Service Specification Language 16

<element name="OptionalOperation" type="xsd:string"
 minOccurs="0" maxOccurs="1"/>

<message name="PMInputMessage">
 <part type="xsd:string" name="Metrics"/>
 <part type="xsd:string" name="Port"/>
 <part element="tns:OptionalOperation" name="Operation"/>
</message>

<message name="PMOutputMessage">
 <part type="xsd:float" name="PerformanceMetrics"/>
 <part type="xsd:string" name="Unit"/>
</message>

<portType name="QueryPerformanceMetricPortType">
 <operation name="QueryPerformanceMetric">
 <input message="tns:PMInputMessage"/>
 <output message="tns:PMOutputMessage"/>
 </operation>
</portType>

A more involved approach would not only allow to query the performance metrics of a
web service, but also to manage it [21].

5 Web Service Attributes Related to Interaction Constraints

5.1. Motivation

As introduced in Section 2, WSDL [1] is a language intended to describe how a client
can access a web service, which includes defining the interface of the web service. This
interface is defined in terms of the operations that a web service exposes, and each
operation is defined in terms of the messages that it consumes and produces. WSDL is
able to specify both synchronous and asynchronous operations of web services. WSDL
is also able to specify both emitting and consuming sides, although normally only the
operations which consume messages are specified.
WSDL is not designed to offer the user of a web service a semantic description of how
the service should be used. Sometimes this can be inferred from the names of the
operations by humans although not automatically. For example, we intuitively know
that we should call the login operation before the order operation. We also may be able
to realise that if the login operation fails we should invoke the register operation.
However, there is no guarantee that the service designer will have used intuitive names
for the operations, nor that they will be in a language which the user will understand.
Ideally, we would like to formalize the ability to interpret a description of how a service
should be used and what operations should be called to achieve a goal or respond to a
failure.
We propose augmenting the WSDL description of a service with interaction constraints
defining the order in which the operations of a service should/can be invoked. These
interaction constraints should be complete, i.e. describe all legal options available to the
user of the service based on the previous operations they have called. It should also be
possible to validate that a client for a service conforms to the interaction constraints
which have been placed upon it. The client could be a simple program or could be a
process definition executed by a process manager system. The language developed to

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

Service Specification Language 17

define such interaction constraints should be concise yet flexible to model all desirable
situations. It should be aligned to WSDL as far as possible to prevent redefining those
aspects of the service already defined and allow the use of standard interfaces already
defined in WSDL. Finally, the language should have formal basis to allow us to reason
about it and those definitions which are defined in it. We have chosen to base our
language around Π-Calculus [2] which is a calculus for describing and analysing
concurrent systems. More details on Π-Calculus and the mapping from the interaction
constraints to it are provided in Section 5.6.

For the purposes of the ADAPT project, we wish to be able to validate that a CS defined
in the Composition Language (D7) conforms to the interaction constraints defined as
part of the Service Specification (D6).

5.2. Related Work

At the moment there is a great deal of effort, in many arenas, being expended to address
different aspects of interaction specification. These arenas include standard bodies, such
as OASIS and WSC, and commercial companies. Four notable, all recent or ongoing,
efforts are Business Process Execution Language for Web Service (BPEL4WS), Web
Services Choreography Interface (WSCI), Web Services Conversation Language
(WSCL) and Web Services Choreography Working Group. In the following section
these efforts will be described.

5.2.1. Business Process Execution Language for Web

Services

The Business Process Execution Language for Web Service (BPEL4WS) [7] provides a
standard for specifying both business process behaviour and business process
interactions. BPEL attempts to describe business process interactions using the mutually
visible message exchange behaviour of each of the parties involved in the protocol,
without revealing their internal behaviour, such descriptions are called abstract
processes. BPEL4WS provides a language, encoded in XML, for the formal
specification of business interaction protocols. The BPEL4WS language contains a rich
set of structured programming style constructs for specifying abstract processes, for
example, sequence, while, pick, invoke, assign, wait and send, in addition there are
constructs for fault tolerance, message correlation, variables and explicit dependences
between constructs. This rich set of constructs means that specifying an abstract process
is comparatively complicated and error prone process, and not readably susceptible to
automatic analysis.

5.2.2. Web Services Choreography Interface (WSCI)

The Web Service Choreography Interface (WSCI) [8] is an XML-based interface
description language that describes the flow of messages exchanged by a web service
participating in choreographed interactions with other services. WSCI describes the
observable behaviour of a Web service, but does not address the definition and the

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

Service Specification Language 18

implementation of the internal process. WSCI describes behaviour in terms of temporal
and logical dependencies among the exchanged messages, sequencing rules,
correlations, exception handling, and transactions. WSCI’s interface description
language, which is based on XML, is used to capture the modeling concepts of:
interfaces, activities and choreographs of activities, processes and units of reuse,
properties, context, message correlation, exceptions, transactions and compensation
activities, and global model. Like BPEL4WS, WSCI’s complexity means that it is not
readably susceptible to automatic analysis, and there are no signs that WSCI has been
widely adopted or updated version will be published.

5.2.3. Web Services Conversation Language (WSCL)

The purpose of Web Service Conversation Language (WSCL) [9] is to provide a
standard for specifying business level conversations. WSCL provides an XML schema
for specifying business level conversations that take place at a single Web service. The
WSCL notion of a conversation is a series of message exchanged between a service-
consumer and a service-provider. The WSCL specification models a conversation as a
finite state machine where state changes are triggered by interactions. An interaction is
the exchange of one or two documents between a service-consumer and a service-
provider. The WSCL model supports five types of interactions Send, Receive,
SendReceive, ReceiveSend and Empty (the first four of which maps to the WSDL
notions of: one-way, notification, send-response and requested-response). WSCL is
simple, and analysable, but does have some limitations, such as, only capable of
modeling two party conversations and does not support message inspection. There are
no signs that WSCL has been widely adopted or updated version will published.

5.2.4. Web Services Choreography Working Group

The Web Services Choreography Working Group [10] is an initiative at by the World
Wide Web Coalition (W3C) and was charted in January 2003. The Working Groups is
chartered to “… create the definition of a choreography, language(s) for describing a
choreography, as well as the rules for composition of, and interaction among, such
choreographed Web services.” At this time the Working Groups “First Working Draft
Specification” is still in preparation.

5.2.5. Summary

There are a number of notable efforts in the area of interaction specification, but each of
the efforts described previous present problems if to be used as a part of the ADAPT
service specification. BPEL4WS and WSCI are too complex, WSCL is too simple, and
the result of the Web Services Choreography Working Group are not yet available. As a
result we have constructed our own interaction specification technique.

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

Service Specification Language 19

5.3. Language Overview

The interaction constraints language defines a series of protocols involving participants
using the extensibility elements provided by WSDL to specify the service to which the
constraints refer. This means that WSDL service definitions can specify, in addition the
ports the service support, the protocols that are supported by the service. This protocol
specification within the WSDL will bind the port types of participants in the protocol
specification to the port of actual Web service. For clarity, fragments of WSDL for the
services are shown with the examples in Section 5.7.

The types of participants in each protocol described by the interaction constraints are
defined using the participantType element and sub-elements to define the portTypes
which that participant supports. The participantType and protocolType elements are
both child elements of the interactionConstraints element which is a direct child of
the wsdl:definitions element.

The interaction constraints themselves are defined within the protocol element which
contains a name attribute, allowing references to named protocols (or fragments) to be
used, enabling re-use of the constraints and aiding modularity. This feature also allows
the designer to use recursive structures, for instance to model cases where operations
may be called until a particular response is received. Within the protocol, the role which
the service itself is playing is defined first, using the self element. Following this are
references to the other participants in the protocol, using the participant element.
Finally, the actual protocol is defined in terms of the following constructs:

• Language constructs:
o Sequence – perform all child elements in sequence with one starting only

when the preceding one has completed
o Choice – perform exactly one of the child elements
o Parallel – perform all of the child elements in parallel and complete

when all parallel executions have completed
o Multiple – perform the child elements an arbitrary number of times
o Nothing – do nothing.

• Communication constructs:
o Send – asynchronous send
o Receive – asynchronous receive
o Service – the server side view of a call. There are three elements

associated with a Service: ServiceInput, ServiceOutput and ServiceFault.
A ServiceInput receives the input to a call. ServiceOutput and
ServiceFault correspond to replying to the client with either the output or
fault message defined in the WSDL description

o Invoke – A client side view of a call. InvokeOutput is analogous to
sending the call request and InvokeInput/InvokeFault are used to model
receiving the result or fault from a call

The language constructs can be nested to an arbitrary level and it is believed that they
can model any possible interaction. This is discussed further in Section 5.2. The four
communication constructs match those defined in WSDL. ServiceInput and

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

Service Specification Language 20

InvokeOutput constructs can also have nested language and communication constructs
as children to depict the work that may be done to satisfy a request.

If the designer of the service has specified “full WSDL” for their service, i.e. if the
service description contains the WSDL describes the messages which will be produced
as well as consumed it is possible to define the interaction constraints in terms of that
single WSDL document. However, most services are not defined in this manner so it is
necessary to provide an alternative method for these services. To achieve this we
provide an “invdef” attribute on the participant element. This is intended to denote that
“this portType is the inverse of the other one”. For instance, the send operation which is
not defined in one WSDL document is the inverse of a receive defined in another
WSDL document. Whether or not this other document exists is not relevant to the
interaction constraints. This simply allows the language to deal with “incomplete but
legal WSDL”.

It is an issue for the author of the interaction constraints to decide what level of detail
they wish to provide. Some may wish to simply model the client and server interaction,
preserving the encapsulation offered by the web service. Other designers may wish to
expose the sequencing which happens “behind the scenes” in communicating with other
services. The latter case offers advantages in scenarios such as the Indirect Response
Example given in Section 5.7.5. It allows the client of a service to fully reason about the
service that they are using and gives a form of “causality”. We wish to be able to offer
both options to a service designer and not constrain them to model only simple
interaction involving two parties.

Some services are designed in ways that the content of a message is not obvious from
its type – one message can convey multiple meanings. For instance, a LoginResponse
message type used in the xCBL Order Management Use Case [3] can indicate both
success and failure. It is thus necessary to be able to inspect the contents of a message
and allow different sequences of operations depending on this content. The construct
that we use to allow message inspection with is a content attribute which is optional on
all of the communication constructs. This attribute must contain a Boolean expression
and that expression can include XPATH syntax [4]. This attribute acts as a guard on the
ensuing elements of the interaction constraints. The scoping of the guard is to the
closing tag of the element if the element is non-empty. If the element is empty, the
guard is scoped to the closing tag of the parent element. In most cases, this will be a
sequence element defining the sequence of operations that are allowed following this
content. Example usage of the content attribute is shown in the Login and Shop
example.

When conversations take place, the participants involved could be known before the
protocol starts, we will refer to this as having statically bound participants or the
participants may be discovered as the protocol progresses, we will refer to this as having
dynamically bound participant, this discovery being deduced from the content of
messages within the conversation. Naturally, conversation may have a mixture of both
statically and dynamically bound participants. Dynamically bound participants is not an
uncommon occurrence in more complicated protocols, such as in Web Services
Coordination and Web Services Transaction (WS-C and WS-T) [5][6]. In WS-C, an
application may be passed a context containing the address of the coordinator to use.
We provide a construct for performing such late bindings using optional attributes on

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

Service Specification Language 21

the communication primitives. The participantBindingName attribute specifies the
participant to be bound from the message. The participantBindingContent attribute
must specify an element with the message using XPATH. The return type of the
XPATH expression should be a node-set and this set should always contain one single
text node. Designers of interaction constraints should ensure that the participants which
are dynamically bound play no part in the conversation before they are bound to a
concrete service.

As described above, the WSDL extensibility mechanisms are used to define the
interaction constraints which a service supports. This is a more elegant solution than
redefining and extending the WSDL schema which would involve significant changes
to tools and could encounter problems when new versions of WSDL are developed. It is
hoped that the proposed solution will not encounter such problems as future versions of
WSDL should be “backwards compatible”.

The specification of interaction constraints by a UDDI tModel [14] is currently under
way. If this is possible, it will enable the specifications to be provided either in a
repository of services, or by the service description itself.

5.4. Language Structure

This section provides a reference of the structure of the language and the gives
fragments of the W3C XML Schema which defines the language. The full schema can
be seen in Section 5.8. Figure 1 shows UML Class diagram showing the structure of the
schema:

Figure 1, UML class diagram of scheme structure

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

Service Specification Language 22

5.4.1. InteractionConstraints Type

The InteractionConstraintsType is the top level type describing the overall
constraints placed upon the service.

<xsd:complexType name="InteractionConstraintsType">
 <xsd:sequence>

<xsd:element name="participantType" type="tns:participantTypeType"
minOccurs="0" maxOccurs="unbounded"/>
<xsd:element name="protocolType" type="tns:protocolTypeType" minOccurs="0"
maxOccurs="unbounded"/>

 </xsd:sequence>
 <xsd:attribute name="targetNamespace" type="xsd:anyURI" use="optional"/>
</xsd:complexType>

The InteractionconstraintsType has the following sub elements:

• participantType – a set of participants in the protocol
• protocolType – a set of protocols which this service supports

The InteractionConstraintsType has the following attributes:

• targetNamespace – the targetNamespace of the document.

Below is an example of the use of the InteractionConstraintsType type, it shows
that it is used for the “top-level” element of interaction constraints definitions, and
contains participant types and protocol types definitions.
<interactionConstraints targetNamespace="http://example.org/interaction-constraints1/">
 <participantType …>
 …
 </participantType>
 <protocolType …>
 …
 </protocolType>
</interactionConstraints>

5.4.2. ParticipantType Type
The ParticipantTypeType is used to describe the participants who take part in the
protocol. They are referenced from within the protocol element and should have name
equivalence.

The ParticipantTypeType has the following sub elements:

• portType – a list of the wsdl:portType which this participant supports

The ParticipantTypeType has the following attributes:

• name – the name of the participant

<xsd:complexType name="ParticipantTypeType">
 <xsd:sequence>
 <xsd:element name="portType" type="tns:portTypeType" maxOccurs="unbounded"/>
 </xsd:sequence>
 <xsd:attribute name="name" type="xsd:NCName" use="required"/>
</xsd:complexType>

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

Service Specification Language 23

Below is an example of the use of the ParticipantTypeType type, it shows that it is
used to define a named participant type, and contains port types definitions.
<interactionConstraints …>
 <participantType name="participantType1">
 <portType name="portTypeName1" def="servPrefix1:portTypeName1">
 <portType name="portTypeName2" invdef="servPrefix1:portTypeName2">
 </participantType>
 …
</interactionConstraints>

5.4.3. PortType Type

The PortTypeType structure is used to describe the wsdl:portType which the
participant implements. These can be directly referenced, or can be “inverse
referenced”. The latter case is used to describe situations where the participant contains
operations which produce messages but do not consume them. These operations are not
usually specified in the wsdl for a service so cannot be referenced. However, they do
match the inverse of another operation in another portType elsewhere. Thus the service
can be thought to implement the inverse portType of another service.

<xsd:complexType name="PortTypeType">
 <xsd:attribute name="name" type="xsd:NCName" use="required"/>
 <xsd:attribute name="def" type="xsd:QName" use="optional"/>
 <xsd:attribute name="invdef" type="xsd:QName" use="optional"/>
</xsd:complexType>

The PortTypeType contains no sub elements. The PortTypeType contains the
following attributes:

• name – the name of the portType
• def – the qualified definition of the portType
• invdef – the qualified inverse definition of the portType

Below is an example of the use of the PortTypeType type, it shows that it is used to
define a named port type, and references an associated WSDL port types.
<interactionConstraints …>
 <participantType name="participantType1">
 <portType name="portTypeName1" def="servPrefix1:portTypeName1">
 <portType name="portTypeName2" invdef="servPrefix2:portTypeName2">
 </participantType>
 …
</interactionConstraints>

5.4.4. ProtocolType Type

The ProtocolTypeType is used to describe the sequences of operations which the
service supports. These can be multiparty and can have an arbitrary level of complexity.
It is possible for the interaction constraints to break the encapsulation rule, i.e. expose
internal behavour of the service to its clients but this can give a extra level of causality.
For instance, in asynchronous systems it may be possible for clients to perform message
correlation as they are also aware of the messages that are being sent between services

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

Service Specification Language 24

as well as those being sent to/from themselves. This is shown further in the Indirect
Response Example in Section 5.7.3.

The ProtocolTypeType has the following sub elements:

• self – defines which participant the service itself is.
• participant – a list of the other participants. Each of these must match one of

the abstract participants defined in the ParticipantType element.
• actionType – description of the protocol itself using the action language

constructs described below.

The ProtocolTypeType has the following attributes:

• name – a unique name for the protocol.

Below is an example of the use of the ProtocolTypeType type, it shows that it is used
to define a named protocol type, and contains a self, participants and an action
definitions.
<protocolType name="protocolType1">
 <self type="participantType1"/>
 <participant name="participant1" type="participantType2"/>
 <sequence>
 …
 </sequence>
</protocolType>

5.4.5. SelfType

The SelfType is used to describe which participants perspective the interaction
constraints relate to, i.e. whose interaction constraints these are.

The SelfType has no sub elements. The SelfType has the following attributes:

• type – the type of the participant.

Below is an example of the use of the SelfType type, it shows that it is used to specify
the type participant that self is.
<protocolType name="protocolType1">
 <self type="participantType1"/>
 <participant name="participant1" type="participantType2"/>
 <sequence>
 …

<xsd:complexType name="ProtocolTypeType">
 <xsd:sequence>
 <xsd:element name="self" type="tns:selfType"/>
 <xsd:element name="participant" type="tns:participantType"
maxOccurs="unbounded"/>
 <xsd:group ref="tns:actionType" minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
 <xsd:attribute name="name" type="xsd:NCName" use="required"/>
</xsd:complexType>

<xsd:complexType name="SelfType">
 <xsd:attribute name="type" type="xsd:QName" use="required"/>
</xsd:complexType>

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

Service Specification Language 25

 </sequence>
</protocolType>

5.4.6. ParticipantType

The ParticipantType element is used to name all of the participants who take part in
the interaction. There must be at least one participant listed.

The ParticipantType has no sub elements. The ParticipantType has the following
attributes:

• name – a unique name for the participant.
• type – the type of participant. This must match one of the participant types

described using the participantType element.
• abstract – if set to true this allows a participant to be “bound” during the

protocol from data in one of the messages sent/received. The default is false.

Below is an example of the use of the ParticipantType type, it shows that it is used to
define a named participant, and specify its participant type.
<protocolType name="protocolType1">
 <self type="participantType1"/>
 <participant name="participant1" type="participantType2"/>
 <sequence>
 …
 </sequence>
</protocolType>

5.4.7. ProtocolRefType

The ProtocolRefType element allows references to other protocols to appear within a
protocol. This aids modularity of design and allows re-use of common protocols. It is
hoped that commonly used public protocols such as WS-T will be defined once and
then referenced using this element. It is possible to map the participants from the
surrounding protocol to participants named in the referenced protocol. This is achieved
using the participant sub element and if the participant sub element is not present it is
assumed that the participants will be bound during the referenced protocol.

<xsd:complexType name="ProtocolRefType">
 <xsd:sequence>
 <xsd:element name="participant" minOccurs="0" maxOccurs="unbounded">
 <xsd:complexType>
 <xsd:attribute name="name" type="xsd:NCName"/>
 <xsd:attribute name="ref" type="xsd:QName"/>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 <xsd:attribute name="ref" type="xsd:QName" use="required"/>
 </xsd:complexType>

<xsd:complexType name="ParticipantType">
 <xsd:attribute name="name" type="xsd:NCName" use="required"/>
 <xsd:attribute name="type" type="xsd:QName" use="required"/>
 <xsd:attribute name="abstract" type="xsd:boolean" use="optional"
default="false"/>
</xsd:complexType>

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

Service Specification Language 26

The ProtocolRefType has the following sub elements:
• participant – the mapping for a participant. The name attribute must match a

named participant in the referencing protocol. The ref attribute must match one
of the named participants in the referenced protocol.

The ProtocolRefType has the following attributes:
• ref – the qualified name of the protocol being reference. This must match a

named protocol.

Below is an example of the use of the ProtocolRefType type, it shows that it is used to
define a sub protocol, and references that protocol’s name.
<sequence>
 <send …/>
 <protocolRef ref="servPrefix1:protocolName1"/>
 <send …/>
</sequence>

5.4.8. SequenceType

The SequenceType element is used within the protocol element to denote that certain
operations must happen in sequence, i.e. one operation cannot happen until the
preceding one has completed. A sequence should have at least two actions which are
being sequenced. A sequence element should not appear directly below another
sequence. This is the same as just using the outer sequence element. Equally a
sequence element should not directly follow another sequence element. This case is
equivalent to concatenating the two sequences.

The SequenceType maps to the sequence (.) operator in π-calculus.

The SequenceType may have any of the ActionType elements as sub elements. The
ActionType elements are described in Section 5.4.23. The SequenceType has no
attributes.

Below is an example of the use of the SequenceType type, it shows that it is used to
define a sequence tag.
<sequence>
 <send …/>
 <receive …/>
 <send …/>
 <receive …/>
 <send …/>
 <receive …/>
</sequence>

5.4.9. ChoiceType

The ChoiceType is used to describe situations where there is a choice of actions which
can occur in the protocol. For instance, either send a LoginSuccess message or send a

<xsd:complexType name="SequenceType">
 <xsd:group ref="tns:ActionType" minOccurs="2" maxOccurs="unbounded"/>
</xsd:complexType>

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

Service Specification Language 27

LoginFailure message. Often the choice construct will be combined with a sequence
construct to allow the protocol to proceed down one of two different “paths”. A choice
element must have at least two children elements and exactly one of these will be
selected.

The ChoiceType maps to the choice (+) operator in π-calculus.

<xsd:complexType name="ChoiceType">
 <xsd:group ref="tns:ActionType" minOccurs="2" maxOccurs="unbounded"/>
</xsd:complexType>

The ChoiceType may have any of the ActionType elements as sub elements. The
ActionType elements are described in Section 5.4.23. The ChoiceType has no
attributes.

Below is an example of the use of the ChoiceType type, it shows that it is used to define
a choice tag.
<choice>
 <receive …/>
 <receive …/>
 <receive …/>
</choice>

5.4.10. ParallelType

The ParallelType element is used to depict actions or sets of actions (using the
sequence element) which can occur in any order. All of the actions must occur but the
order can be arbitrary.

The parallelType maps to the parallel Composition (|) operator in π-calculus.

The ParallelType may have any of the ActionType elements as sub elements. The
ActionType elements are described in Section 5.4.23. The ParallelType has no
attributes.

Below is an example of the use of the ParallelType type, it shows that it is used to
define a parallel tag.
<parallel>
 <send …/>
 <send …/>
 <send …/>
</parallel>

5.4.11. MultipleType

The MultipleType element describes actions which can happen multiple times. The
number of times that they can happen is not known until run-time. The MultipleType

<xsd:complexType name="ParallelType">
 <xsd:group ref="tns:ActionType" minOccurs="2" maxOccurs="unbounded"/>
</xsd:complexType>

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

Service Specification Language 28

element must have exactly one child element to denote the structure which will be
executed multiple times although this could be a SequenceType so a sequence of
operations can happen multiple times.

The MultipleType maps to the replication (!) operator in π-calculus.

<xsd:complexType name="MultipleType">
 <xsd:group ref="tns:ActionType"/>
</xsd:complexType>

The MultipleType may have any of the ActionType elements as sub elements. The
ActionType elements are described in Section 5.4.23. The MultipleType has no
attributes.

Below is an example of the use of the MultipleType type, it shows that it is used to
define a multiple tag.
<multiple>
 <sequence>
 <send …/>
 <receive …/>
 </sequence>
</multiple>

5.4.12. NothingType

The NothingType is used to allow an optional step in the interaction constraints. When
combined with a ChoiceType element it allows a protocol to continue whether or not an
action or set of action occurs. The NothingType element must be empty.

<xsd:simpleType name="NothingType">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value=""/>
 </xsd:restriction>

</xsd:simpleType>

The NothingType has no sub elements. The NothingType has no attributes.

Below is an example of the use of the NothingType type, it shows that it is used to
define a nothing tag.
<nothing/>

5.4.13. SendType

The SendType models an operation which performs an asynchronous sending of a
message. This equates to a wsdl:operation which has only an output message. This
type of communication can also be referred to as a notification.

The author of the interaction constraints must qualify which operation the send is
referring to using the InteractionAttributes described in Section 5.4.21. As

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

Service Specification Language 29

described above, the portType used may be defined explicitly but it is more likely in
this situation that it is defined as the inverse of another portType defined elsewhere.

It is possible to refer to the contents of the message that is being sent using the
XpathAttribute group. These allow the binding of a participant from the message
or give different subsequent operations based on the contents of the message. These
options are explained in detail in section 5.4.22.

<xsd:complexType name="SendType">
 <xsd:attributeGroup ref="tns:InteractionAttributes"/>
 <xsd:attributeGroup ref="tns:XpathAttributes"/>
</xsd:complexType>

The SendType has no sub elements. The SendType has attributes described fully in
Section 5.4.21 and 5.4.22.

Below is an example of the use of the SendType type, it shows that it is used to define a
send tag.
<send operation="oper1" portType="port1" participant="participant2"
 participantPortType="port2"/>

The send tag example below contains a content attribute that indicates the required
content of the sent message.
<send operation="oper1" portType="port1" participant="participant2"
 participantPortType="port2" content="boolean(//success)"/>

5.4.14. ReceiveType

The ReceiveType element models an asynchronous receipt of a message. The author of
the constraints may use the message inspection attributes (5.4.22) with this element and
must use the InteractionAttributes to describe the receiving operation as described
in Section 5.4.21

<xsd:complexType name="ReceiveType">
 <xsd:attributeGroup ref="tns:InteractionAttributes"/>
 <xsd:attributeGroup ref="tns:XpathAttributes"/>
</xsd:complexType>

The ReceiveType has no sub elements. The ReceiveType has attributes described fully
in Section 5.4.21 and 5.4.22.

Below is an example of the use of the ReceiveType type, it shows that it is used to
define a receive tag.
<receive operation="oper1" portType="port1" participant="participant2"
 participantPortType="port2"/>

The receive tag example below contains a content attribute that indicates the required
content of the received message.
<receive operation="oper1" portType="port1" participant="participant2"
 participantPortType="port2" content="boolean(//success)"/>

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

Service Specification Language 30

5.4.15. InvokeOutputType

The InvokeOutputType action is used to describe the sending of a message which
provides input to another service, implemented as a call. It is used with the
InvokeInput and InvokeFault to model a call to a synchronous service.

The InvokeOutputType can have an arbitrary nesting structure of actions underneath it.
These should include at least one InvokeInput or InvokeFault to model the return
from the call. It may be possible to have a number of “return points” where the call can
return to (possibly depending on the message contents). These are modeled with
multiple InvokeInput and InvokeFault elements.

The InvokeOutputType element may have any of the ActionType elements as sub
elements. The ActionType elements are described in Section 5.4.23. The
InvokeOutputType has attributes described in Section 5.4.21 and 5.4.22.

Below is an example of the use of the InvokeOutputType type, it shows that it is used
to define an operation invocation, and contains an action definitions.
<invokeOutput operation="oper1" portType="port1" participant="participant2"
 participantPortType="port2">
 <choice>
 <invokeInput/>
 <invokeFault name="faultName"/>
 </choice>
</invokeOutput>

5.4.16. InvokeInputType

The InvokeInputType models the normal return from a synchronous invocation of a
web service, i.e. the receipt of a wsdl:output message. This element should always be
a child (although not necessarily a direct child) of the InvokeOutputType.

<xsd:complexType name="InvokeInputType">
 <xsd:attributeGroup ref="tns:XpathAttributes"/>
</xsd:complexType>

The InvokeInputType has no sub elements. The InvokeInputType can have any of the
XpathAttributes described in Section 5.4.22.

Below is an example of the use of the InvokeInputType type, it shows that it is used to
define an invokeInput tag.
<invokeOutput operation="oper1" portType="port1" participant="participant2"
 participantPortType="port2">
 <choice>
 <invokeInput/>

<xsd:complexType name="InvokeOutputType">
 <xsd:group ref="tns:ActionType" maxOccurs="unbounded"/>
 <xsd:attributeGroup ref="tns:InteractionAttributes"/>
 <xsd:attributeGroup ref="tns:XpathAttributes"/>
</xsd:complexType>

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

Service Specification Language 31

 <invokeFault name="faultName"/>
 </choice>
</invokeOutput>

5.4.17. InvokeFaultType

The InvokeFaultType models the receipt of a fault message from a synchronous
invocation of a web service. It should always be the child element of a
InvokeOutputType (although not necessarily the direct child).

<xsd:complexType name="InvokeFaultType">
 <xsd:attribute name="name" type="xsd:NCName" use="required"/>
 <xsd:attributeGroup ref="tns:XpathAttributes"/>
</xsd:complexType>

The InvokeFaultType has no sub elements. The InvokeFaultType can have any of the
XpathAttributes described in Section 5.4.22

Below is an example of the use of the InvokeFaultType type, it shows that it is used to
define an invokeFault tag.
<invokeOutput operation="oper1" portType="port1" participant="participant2"
 participantPortType="port2">
 <choice>
 <invokeInput/>
 <invokeFault name="faultName"/>
 </choice>
</invokeOutput>

5.4.18. ServiceInputType

The ServiceInputType element describes the input to a call which is exposed by the
service providing the interaction constraints. It is combined with the
ServiceOutputType and ServiceFaultType elements to model a full synchronous call
made to the service. ServiceOutputType and ServiceFaultType should always
appear “underneath” the ServiceInputType to describe when the response is returned
to the client.

The ServiceInputType element may have any of the ActionType elements as sub
elements. The ActionType elements are described in Section 5.4.23. The
ServiceInputType has attributes described in Sections 5.4.21 and 5.4.22.

Below is an example of the use of the ServiceInputType type, it shows that it is used
to define a service invocation, and contains an action definitions.
<serviceInput operation="oper1" portType="port1" participant="participant2"
 participantPortType="port2">

<xsd:complexType name="ServiceInputType">
 <xsd:group ref="tns:ActionType"/>
 <xsd:attributeGroup ref="tns:InteractionAttributes"/>
 <xsd:attributeGroup ref="tns:XpathAttributes"/>
</xsd:complexType>

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

Service Specification Language 32

 <choice>
 <serviceOutput/>
 <serviceFault name="faultName"/>
 </choice>
</serviceInput>

5.4.19. ServiceOutputType

The ServiceOutputType describes the response sent to a client who invoked a call on
the service described by the interaction constraints. It should always appear as a child
element of the ServiceInputType element.

<xsd:complexType name="ServiceOutputType">
 <xsd:attributeGroup ref="tns:XpathAttributes"/>
</xsd:complexType>

The ServiceOutputType has no sub elements. The ServiceOutputType has attributes
described in Section 5.4.22.

Below is an example of the use of the ServiceOutputType type, it shows that it is used
to define a serviceOutput tag.
<serviceInput operation="oper1" portType="port1" participant="participant2"
 participantPortType="port2">
 <choice>
 <serviceOutput/>
 <serviceFault name="faultName"/>
 </choice>
</serviceInput>

5.4.20. ServiceFaultType

The ServiceFaultType element models returning a wsdl:fault message to a client in
response to a synchronous invocation of a web service exposed by the service described
by the interaction constraints.

The ServiceFaultType element should always appear as a child of the
ServiceInputType element as it is not possible to return a fault to a call which has not
been made/has completed.

<xsd:complexType name="ServiceFaultType">
 <xsd:attribute name="name" type="xsd:NCName" use="required"/>
 <xsd:attributeGroup ref="tns:XpathAttributes"/>
</xsd:complexType>

The ServiceFaultType has no sub elements. The ServiceFaultType has attributes
described in Sections 5.4.21 and 5.4.22.

Below is an example of the use of the ServiceFaultType type, it shows that it is used
to define a serviceFault tag.
<serviceInput operation="oper1" portType="port1" participant="participant2"
 participantPortType="port2">
 <choice>
 <serviceOutput/>

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

Service Specification Language 33

 <serviceFault name="faultName"/>
 </choice>
</serviceInput>

5.4.21. InteractionAttributes

The InteractionAttributes are used on the communication primitives described in
Sections 5.4.13 – 5.4.20. They are used to define the operation which is being referred
to by the action in the interaction constraints. The attributes consist of:

• portType – the portType that of the service being referred to.
• operation – the operation of the portType specified above.
• participant – the participant which is involved in the action. This must match

one of the participants named at the start of the protocol.
• participantPortType – the portType of the participant.
• participantOperation – the operation of the portType on the participant

involved. The attribute is optional and only necessary if there are multiple
operations on the participant with the same signature.

The above attributes allow the action to refer to exactly one operation on both of the
parties involved (self and the participant). All the values of the attributes must be non-
colonised names. [12]

<xsd:attributeGroup name="InteractionAttributes">
 <xsd:attribute name="operation" type="xsd:NCName" use="required"/>
 <xsd:attribute name="portType" type="xsd:NCName" use="required"/>
 <xsd:attribute name="participant" type="xsd:NCName" use="required"/>
 <xsd:attribute name="participantPortType" type="xsd:NCName" use="required"/>
 <xsd:attribute name="participantOperation" type="xsd:NCName" use="optional"/>
</xsd:attributeGroup>

5.4.22. XpathAttributes

The XpathAttributes allow the author to inspect the contents of a message. This can
be used for two purposes:

• Dynamic Binding of participants: Situations exist when the details of some of
the participants of a protocol are not known until the protocol is under way, for
instance WS-C [6]. The participantBindingName and
participantBindingContent attributes allow participants to be bound during
the protocol. The former attribute specifies the name of the participant to be
bound. The latter must contain an XPATH expression to identify the fragment of
the message which contains the binding details of the participant. This
expression should return a node-set which contains a single node.

• Different protocols based on message content: It is desirable to be able to
specify different options for the protocol depending on the contents of a
message. For instance, xCBL specifies an order management scenario where a
LoginResponse message can indicate both success or failure of the Login
operation. Clearly we wish to be able to distinguish between the two cases and
only allow an order to be placed if the login has been successful. The content
attribute specifies an XPATH expression which must evaluate to a Boolean
value. This attribute acts as a Boolean guard on the remainder of the protocol.

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

Service Specification Language 34

For instance, if used on a receiving action within a sequence and the expression
evaluates to:

o true: the message was received and the protocol continues.
o false: the message was received but the protocol does not continue

down this “track”.

<xsd:attributeGroup name="XpathAttributes">
 <xsd:attribute name="content" type="xsd:string" use="optional"/>
 <xsd:attribute name="participantBindingName" type="xsd:NCName" use="optional"/>
 <xsd:attribute name="participantBindingContent" type="xsd:string"
use="optional"/>
</xsd:attributeGroup>

5.4.23. ActionType
The ActionType element group is the group of elements which can be nested below the
protocolType.

The ActionType sub elements are described in Sections 5.4.8 to 5.4.20. The
ActionType attributes are described in Sections 5.4.8 to 5.4.20.

5.5. Language Use Reference

This section describes how the language should be used within the WSDL description
of a service to define the interaction constraints. The schema for this can be seen in
Section 5.8 and an example usage in Section 5.7.1

5.5.1 ProtocolType Type

This element is used to describe the interaction constraints which the service supports. It
is the top level element as far as the interaction constraints are concerned and must be a
direct child of the wsdl:definitions element in the WSDL document.

<xsd:complexType name="ProtocolType">
 <xsd:sequence>
 <xsd:element name="self" type="tns:SelfType"/>
 <xsd:element name="participant" type="tns:ParticipantType" minOccurs="0"
 maxOccurs="unbounded"/>

<xsd:group name="ActionType">
 <xsd:choice>
 <xsd:element name="sequence" type="tns:SequenceType"/>
 <xsd:element name="choice" type="tns:ChoiceType"/>
 <xsd:element name="parallel" type="tns:ParallelType"/>
 <xsd:element name="multiple" type="tns:MultipleType"/>
 <xsd:element name="nothing" type="tns:NothingType"/>
 <xsd:element name="send" type="tns:SendType"/>
 <xsd:element name="receive" type="tns:ReceiveType"/>
 <xsd:element name="invokeOutput" type="tns:InvokeOutputType"/>
 <xsd:element name="invokeInput" type="tns:InvokeInputType"/>
 <xsd:element name="invokeFault" type="tns:InvokeFaultType"/>
 <xsd:element name="serviceInput" type="tns:ServiceInputType"/>
 <xsd:element name="serviceOutput" type="tns:ServiceOutputType"/>
 <xsd:element name="serviceFault" type="tns:ServiceFaultType"/>
 <xsd:element name="protocol" type="tns:ProtocolRefType"/>
 </xsd:choice>
</xsd:group>

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

Service Specification Language 35

 </xsd:sequence>
 <xsd:attribute name="type" type="xsd:QName"/>
</xsd:complexType>

The protocol element should have a type attribute which references a named
protocolType. This should be either defined in or imported into the WSDL document
and is used to describe the concrete interaction constraints.

Below is an example of the use of the ProtocolType type, it shows that it is used to
define a named protocol, and contains a self and participants definitions.
<wsdl:service …>
 <wsdl:port …>
 …
 </wsdl:port>
 <protocol type="protocolType1">
 <self>
 <portType name="portName1" port="tns:port1"/>
 </self>
 <participant name="participant1" type="participantType2">
 <portType name="portName2" port="client:port2"/>
 <portType name="portName3" port="client:port3"/>
 </participant>
 </protocol>
</wsdl:service>

5.5.2 SelfType Type

The self element must appear as the first child element of the protocol element. It
describes the role that this service plays in the interaction and which portTypes this
service supports. Only one self element should appear as the service can only play one
role per protocol. The self element should be qualified with at least one sub element to
define the portType which the service supports for the protocol.

<xsd:complexType name="SelfType">
 <xsd:sequence>
 <xsd:element name="portType" type="tns:PortTypeType" maxOccurs="unbounded"/>
 </xsd:sequence>
</xsd:complexType>

Below is an example of the use of the SelfType type, it shows that it is used to specify
define a self, and contains port type definitions.
<wsdl:service …>
 <wsdl:port …>
 …
 </wsdl:port>
 <protocol type="protocolType1">
 <self>
 <portType name="portName1" port="tns:port1"/>
 </self>
 <participant name="participant1" type="participantType2">
 <portType name="portName2" port="client:port2"/>
 <portType name="portName3" port="client:port3"/>
 </participant>
 </protocol>
</wsdl:service>

5.5.3 ParticipantType Type

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

Service Specification Language 36

The participant element must appear directly after the self element. It is used to
describe the other parties which take part in the interaction constraints. For instance, if
the interaction constraints refer to a classical RPC, from a “server” aspect, the only
other participant would be a “client”. It is possible to specify any number of other
participants depending on the complexity of the protocol. Each participant must be
qualified with the portTypes that they support, using the portType sub element and the
name and port attributes associated with this.

<xsd:complexType name="ParticipantType">
 <xsd:sequence>
 <xsd:element name="participant" type="tns:PortTypeType" maxOccurs="unbounded"/>
 </xsd:sequence>
 <xsd:attribute name="name" type="xsd:NCName"/>
</xsd:complexType>

Below is an example of the use of the ParticipantType type, it shows that it is used to
specify define a participant, and contains port type definitions.
<wsdl:service …>
 <wsdl:port …>
 …
 </wsdl:port>
 <protocol type="protocolType1">
 <self>
 <portType name="portName1" port="tns:port1"/>
 </self>
 <participant name="participant1" type="participantType2">
 <portType name="portName2" port="client:port2"/>
 <portType name="portName3" port="client:port3"/>
 </participant>
 </protocol>
</wsdl:service>

5.5.4 PortTypeType Type

The portType element must appear as a direct child of the self element or the participant
element. It is used to define the portTypes that the service and participants support.
<xsd:complexType name="PortTypeType">
 <xsd:attribute name="name" type="xsd:NCName"/>
 <xsd:attribute name="port" type="xsd:QName"/>
</xsd:complexType>

Below is an example of the use of the PortTypeType type, it shows that it is used to
define a named port type, and references WSDL port specification.
<wsdl:service …>
 <wsdl:port …>
 …
 </wsdl:port>
 <protocol type="protocolType1">
 <self>
 <portType name="portName1" port="tns:port1"/>
 </self>
 <participant name="participant1" type="participantType2">
 <portType name="portName2" port="client:port2"/>
 <portType name="portName3" port="client:port3"/>
 </participant>
 </protocol>
</wsdl:service>

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

Service Specification Language 37

5.6. Π-Calculus Mapping

To ensure that our interaction constraints language is both complete and precise we
have based it on π-calculus, a basic formalism designed for the validation of
communicating systems. In [2] Milner proves that communicating systems can be
modeled with a relatively small set of language primitives:

• sequence – P.Q, process P followed by process Q.
• summation (or choice) – P+Q, either process P or process Q.
• parallel composition – P|Q, both P and Q in parallel.
• replication - !P, P many times in parallel.
• receive – x(a), receive a message called a on channel x.
• send – x<a>, send a message a on channel x.

The first four primitives describe how to construct processes and the final two describe
communication between processes. In our language we use the construction primitives
directly and provide several different send and receive primitives for alignment with
WSDL. We regard each individual web service as a process in the sequence, larger
processes can be created with the language primitives. The language to π-calculus
mappings are shown below:

Language construct π-calculus
mapping

<sequence> sequence
<choice> summation
<parallel> parallel
<multiple> replication
<receive> receive
<send> send
<serviceInput> receive
<serviceOutput> send
<serviceFault> send
<invokeOutput> send
<invokeInput> receive
<invokeFault> receive

Communication channels are defined by the participant attributes of the various
communication constructs. send, receive, serviceInput and invokeOutput all
define their associated participants directly. serviceOutput and serviceFault use
the participant attribute of the associated serviceInput tag. Similarly invokeInput
and invokeFault use the participant attribute from the associated invokeOutput tag.

The π-calculus mapping described above allows the system developer to verify that they
are using a service as the service designer intended. To achieve this, the developer needs
to produce a π-calculus representation of their system which it is possible to validate
against the π-calculus representation of the interaction constraints. An alternative to

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

Service Specification Language 38

developing their own π-calculus representation could be to use a language which has an
inherent mapping to π-calculus such as the one described in D7 [28]. Tools could be
used to verify that the π-calculus representation of a system validates against the
representation of π-calculus for the sequencing constraints, thus proving that the system
utilizes the service correctly. We are currently investigating the Mobility Workbench
[27] being developed by Edinburgh University for this purpose.

5.7. Examples

In this section some scenarios involving specification of services interaction constraints
will be presented, these scenarios vary from real world protocols to cases which prove
difficult to model in other technologies.

5.7.1. Callback Example

In this scenario, the Client makes a synchronous invocation of the echo operation of the
EchoServer, which in turn calls the echo operation of the Client, when the invocation on
the Client completed the invocation on EchoServer completes.

EchoServerClient

Service

Input-Only/Input-Output port

Output-Only/Output-Input port

Port link

The port types involved in this scenario are:
<wsdl:portType name="Echoer">
 <wsdl:operation name="echo" parameterOrder="text">

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

Service Specification Language 39

 <wsdl:input message="tns:EchoRequest"/>
 <wsdl:output message="tns:EchoResponse"/>
 <wsdl:fault name="EchoException" message="tns:EchoException"/>
 </wsdl:operation>
</wsdl:portType>

This scenario contains one type of participant:
<participantType name="EchoService">
 <portType name="Echoee" invdef="tns:Echoer"/>
 <portType name="Echoer" def="tns:Echoer"/>
</participantType>

The protocol specification from the EchoServer’s perspective, could look something
like:
<protocolType name="EchoWithCallback">
 <self type="tns:EchoService"/>
 <participant name="EchoClient" type="tns:EchoService"/>
 <serviceInput operation="echo" portType="Echoer" participant="Client"
participantPortType="Echoee">
 <sequence>
 <invokeOutput operation="echo" portType="Echoee" participant="Client"
participantPortType="Echoer">
 <choice>
 <invokeInput/>
 <invokeFault name="EchoException"/>
 </choice>
 </invokeOutput>
 <choice>
 <serviceOutput/>
 <serviceFault name="EchoException"/>
 </choice>
 </sequence>
 </serviceInput>
</protocolType>

The protocol specification from the Client’s perspective, could look something like:
<protocolType name="CallWithCallback">
 <self type="tns:EchoService"/>
 <participant name="Echoer" type="tns:EchoService"/>
 <invokeOutput operation="echo" portType="Echoee" participant="Server"
participantPortType="Echoer">
 <sequence>
 <serviceInput operation="echo" portType="Echoer" participant="Echoer"
participantPortType="Echoee">
 <choice>
 <serviceOutput/>
 <serviceFault name="EchoException"/>
 </choice>
 </serviceInput>
 <choice>
 <invokeInput/>
 <invokeFault name="EchoException"/>
 </choice>
 </sequence>
 </invokeOutput>
</protocolType>

The service specification for the EchoServer
<wsdl:service name="EchoServer">
 <wsdl:port name="Echoer" binding="tns:EchoerSoapBinding">
 . . .
 </wsdl:port>
 <wsdl:port name="Echoee" binding="tns:EchoeeSoapBinding">
 . . .
 </wsdl:port>
 <protocol type="echo:EchoWithCallback">
 <self>
 <portType name="Echoer" port="tns:Echoer"/>
 <portType name="Echoee" port="tns:Echoee"/>
 </self>
 <participant name="EchoClient">

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

Service Specification Language 40

 <portType name="Echoer" port="client:Echoer"/>
 <portType name="Echoee" port="client:Echoee"/>
 </participant>
 </protocol>
</wsdl:service>

Π-Calculus equivalent

CE(EchoReq) . EC<EchoReq> . (CE(EchoRes) + CE(EchoException)) .
EC<EchoRes> + EC<EchoException>)

5.7.2. Forwarder Example

In this scenario, the Client makes a synchronous invocation of the echo operation of the
EchoServer1, which calls the echo operation of the EchoServer2, when the invocation
on EchoServer2 is completed the invocation on EchoServer1 completes. If at any stage
an invocation generates a fault, the enclosing invocation, if any, should produce a fault.

EchoServer1 EchoServer2 Client

Service

Input-Only/Input-Output port

Output-Only/Output-Input port

Port link

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

Service Specification Language 41

The port types involved in this scenario are:
<wsdl:portType name="Echoer">
 <wsdl:operation name="echo" parameterOrder="text">
 <wsdl:input message="tns:EchoRequest"/>
 <wsdl:output message="tns:EchoResponse"/>
 <wsdl:fault name="EchoException" message="tns:EchoException"/>
 </wsdl:operation>
</wsdl:portType>

<wsdl:portType name="Echoee">
 <wsdl:operation name="echo" parameterOrder="text">
 <wsdl:output message="tns:EchoResponse"/>
 <wsdl:input message="tns:EchoRequest"/>
 <wsdl:fault name="EchoException" message="tns:EchoException"/>
 </wsdl:operation>
</wsdl:portType>

This scenario contains three types of participants:
<participantType name="EchoClient">
 <portType name="Echoee" def="tns:Echoee"/>
</participantType>

<participantType name="EchoServer">
 <portType name="Echoer" def="tns:Echoer"/>
</participantType>

<participantType name="EchoForwarder">
 <portType name="Echoee" def="tns:Echoee"/>
 <portType name="Echoer" def="tns:Echoer"/>
</participantType>

Or, if the port type Echoee was not defined (uses invdef):
<participantType name="EchoClient">
 <portType name="Echoee" invdef="tns:Echoer"/>
</participantType>

<participantType name="EchoServer">
 <portType name="Echoer" def="tns:Echoer"/>
</participantType>

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

Service Specification Language 42

<participantType name="EchoForwarder">
 <portType name="Echoee" invdef="tns:Echoer"/>
 <portType name="Echoer" def="tns:Echoer"/>
</participantType>

The protocol specification from the EchoServer2’s perspective, could look something
like (note that from EchoServer2’s perspective EchoServer1 is it’s client):
<protocolType name="Echo">
 <self type="tns:EchoServer"/>

 <participant name="EchoClient" type="tns:Client"/>

 <serviceInput operation="echo" portType="Echoer" participantType="Client"
 participantPortType="Echoee"/>
 <choice>
 <serviceOutput/>
 <serviceFault name="EchoException"/>
 </choice>
 </serviceInput>
</protocolType>

The protocol specification from the EchoServer1’s perspective, could look something
like:
<protocolType name="Forward">
 <self type="tns:EchoForwarder"/>

 <participant name="Client" type="tns:EchoClient"/>

 <participant name="Echoer" type="tns:EchoServer"/>

 <serviceInput operation="echo" portType="Echoer" participant="Client"
 participantPortType="Echoee">
 <choice>
 <invokeOutput operation="echo" portType="Echoee" participant="Server"
 participantPortType="Echoer">
 <choice>
 <sequence>
 <invokeInput/>
 <serviceOutput/>
 </sequence>
 <sequence>
 <invokeFault name="EchoException"/>
 <serviceFault name="EchoException"/>
 </sequence>
 </choice>
 </invokeOutput>
 <serviceFault name="EchoException"/>
 <choice>
 </serviceInput>
</protocolType>

Or, if the behaviour of EchoServer1 is not specified:
<serviceInput operation="echo" portType="Echoer" participant="Client"
 participantPortType="Echoee">
 <choice>
 <invokeOutput operation="echo" portType="Echoee" participant="Server"
 participantPortType="Echoer">
 <sequence>
 <choice>
 <invokeInput/>
 <invokeFault name="EchoException"/>
 </choice>
 <choice>
 <serviceFault name="EchoException"/>
 <serviceOutput/>
 </choice>
 </sequence>
 </invokeOutput>
 <serviceFault name="EchoException"/>
 </choice>
</serviceInput>

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

Service Specification Language 43

The protocol specification from the Client’s perspective, could look something like:
<protocolType name="Call">
 <self type="tns:EchoClient"/>

 <participant name="Echoer" type="tns:EchoServer"/>

 <invokeOutput operation="echo" portType="Echoee" participant="Server"
 participantPortType="Echoer">
 <choice>
 <invokeInput/>
 <invokeFault name="EchoException"/>
 </choice>
 </invokeOutput>
</protocolType>

Π-Calculus equivalent

(EchoServer2 Perspective)
CE(EchoReq) . (CE<EchoRes> + CE<EchoException>)

(EchoServer1 Perspective)
CE(EchoReq) . (E1E2<EchoReq> . (E2E1(EchoRes) . EC<EchoRes>) +
E2E1(EchoException) . EC<EchoException>)) + EC<EchoException>

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

Service Specification Language 44

5.7.3. Indirect Response Example

In this scenario, the Client sends an asynchronous message to Server1, which causes
Server1 to send a message to Server2, which in turn causes Server2 to send a message
to Client.

Server1

Server2

Client

Service

One-way (Input-Only) operation endpoint

Notification (Output-Only) operation endpoint

Operation endpoint link

The port types involved in this scenario are:
<wsdl:portType name="ClientOpers">
 <wsdl:operation name="send">
 <wsdl:output message="tns:Message1"/>
 </wsdl:operation>
 <wsdl:operation name="recv">
 <wsdl:input message="tns:Message3"/>
 </wsdl:operation>
</wsdl:portType>

<wsdl:portType name="Server1Opers">
 <wsdl:operation name="recv">
 <wsdl:input message="tns:Message1"/>
 </wsdl:operation>
 <wsdl:operation name="send">
 <wsdl:output message="tns:Message2"/>

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

Service Specification Language 45

 </wsdl:operation>
</wsdl:portType>

<wsdl:portType name="Server2Opers">
 <wsdl:operation name="recv">
 <wsdl:input message="tns:Message2"/>
 </wsdl:operation>
 <wsdl:operation name="send">
 <wsdl:output message="tns:Message3"/>
 </wsdl:operation>
</wsdl:portType>

This scenario contains three types of participants:
<participantType name="Client">
 <portType name="Opers" def="tns:ClientOpers"/>
</participantType>

<participantType name="Server1">
 <portType name="Opers" def="tns:Server1Opers"/>
</participantType>

<participantType name="Server2">
 <portType name="Opers" def="tns:Server2Opers"/>
</participantType>

The protocol specification from the Client’s perspective, could look something like:
<protocolType name="Request">
 <self type="tns:Client"/>

 <participant name="Server1" type="tns:Server1"/>

 <participant name="Server2" type="tns:Server2"/>

 <send operation="send" portType="Opers" participant="Server1"
 participantPortType="Opers"/>
 <receive operation="recv" portType="Opers" participant="Server2"
 participantPortType="Opers"/>
</protocolType>

The protocol specification from the Server1’s perspective, could look something like:
<protocolType name="Service">
 <self type="tns:Server1"/>

 <participant name="Client" type="tns:Client"/>

 <participant name="Server2" type="tns:Server2"/>

 <receive operation="recv" portType="Opers" participant="Client"
 participantPortType="Opers">
 <send operation="send" portType="Opers" participant="Server2"
 participantPortType="Opers">
</protocolType>

The protocol specification from the Server2’s perspective, could look something like:
<protocolType name="Response">
 <self type="tns:Server2"/>

 <participant name="Server1" type="tns:Server1"/>

 <participant name="Client" type="tns:Client"/>

 <receive operation="recv" portType="Opers" participant="Server1"
 participantPortType="Opers">
 <send operation="send" portType="Opers" participant="Client"
 participantPortType="Opers">
</protocolType>

Π-Calculus equivalent

(Server1 Perspective)
CS1(Message1) . S1S2<Message2>

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

Service Specification Language 46

(Server1 Perspective)
S1S2(Message2) . S2C<Message3>

5.7.4. Login and Shop Example

In this scenario, the Client send an asynchronous message to a login service in order to
authenticate with a view to shopping. The Login Service will in response, send an
asynchronous message to the client with the result of that login. This message can
indicate either success or failure to login. If the message indicates failure, the client can
send a message to the register operation of the Login Service. This login process can be
repeated as many times as necessary to perform a successful registration.
Once the Client has authenticated it can send asynchronous messages to operations of
the Shop, which in this simplified example do not fail. This example shows the need for
message inspection to dictate the possibly future of the conversation.

Login

Service

Shop

Client

Service

Input-Only/Input-Output port

Output-Only/Output-Input port

Port link

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

Service Specification Language 47

The port types involved in this scenario are:
<wsdl:portType name="LoginServicePT">
 <wsdl:operation name="login" parameterOrder="text">
 <wsdl:input message="tns:LoginRequest"/>
 </wsdl:operation>
 <wsdl:operation name="register" parameterOrder="text">
 <wsdl:input message="tns:RegisterRequest"/>
 </wsdl:operation>
</wsdl:portType>

<wsdl:portType name="ClientPT">
 <wsdl:operation name="loginResult" parameterOrder="text">
 <wsdl:input message="tns:LoginResponse"/>
 </wsdl:operation>
 <wsdl:operation name="registerResult" parameterOrder="text">
 <wsdl:input message="tns:registerResponse"/>
 </wsdl:operation>
 <wsdl:operation name="invoice" parameterOrder="text">
 <wsdl:input message="tns:invoice"/>
 </wsdl:operation>
 <wsdl:operation name="notLoggedIn" parameterOrder="text">
 <wsdl:input message="tns:notLoggedIn"/>
 </wsdl:operation>
</wsdl:portType>

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

Service Specification Language 48

<wsdl:portType name="ShopPT">
 <wsdl:operation name="order" parameterOrder="text">
 <wsdl:input message="tns:order"/>
 </wsdl:operation>
</wsdl:portType>

This scenario contains three types of participants:
<participantType name="Client">
 <portType name="Client" def="tns:ClientPT"/>
 <portType name="LoginService" invdef="LoginServiecPT"/>
 <portType name="Shop" invdef="ShoptPT"/>
</participantType>

<participantType name="LoginService">
 <portType name="LoginService" def="tns:LoginServicePT"/>
 <portType name="ClientLogin" invdef="ClientPT"/>
</participantType>

<participantType name="Shop">
 <portType name="Shop" def="tns:ShopPT"/>
 <portType name="ClientShop" invdef="ClientPT"/>
</participantType>

The protocol specification from the LoginService’s perspective, could look something
like:
<protocolType name="authenticate">
 <self type="tns:LoginService"/>
 <participant name="Client" type="tns:Client"/>
 <sequence>
 <receive operation="login" portType="LoginService" participant="Client"
participantPortType="ClientPT"/>
 <!-- either we send a loginResult and finish or we send a loginResult and then can
continue with register -->
 <choice>
 <send operation="loginResult" content="boolean(//success)" portType="ClientLogin"
participant="Client" participantPortType="ClientPT"/>
 <sequence>
 <send operation="loginResult" content="boolean(//failure)"
portType="ClientLogin" participant="Client" participantPortType="ClientPT"/>
 <protocol ref="register"/>
 </sequence>
 </choice>
 </sequence>
</protocolType>

<!-- Re-use of the protocol "register" -->

<protocolType name="register">
 <self type="tns:LoginService"/>
 <participant name="Client" type="tns:Client"/>
 <sequence>
 <receive operation="register" portType="LoginService" participant="Client"
participantPortType="ClientPT"/>
 <choice>
 <send operation="registerResult" content="boolean(//success)"
portType="ClientLogin" participant="Client" participantPortType="ClientPT"/>
 <!-- Recurse if the register operation fails -->
 <sequence>
 <send operation="registerResult" content="boolean(//failure)"
portType="ClientLogin" participant="Client" participantPortType="ClientPT"/>
 <protocol ref="register"/>
 </sequence>
 </choice>
 </sequence>
</protocolType>

The protocol specification from the Shop’s perspective, could look something like:
<protocolType name="buy">
 <self type="Shop"/>
 <participant name="Client" type="tns:Client"/>

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

Service Specification Language 49

 <choice>
 <sequence>
 <receive operation="order" portType="Shop" participant="Client"
participantPortType="ClientPT"/>
 <send operation="invoice" portType="ClientShop" participant="Client"
participantPortType="ClientPT"/>
 </sequence>
 <sequence>
 <receive operation="order" portType="Shop" participant="Client"
participantPortType="ClientPT"/>
 <send operation="notLoggedIn" portType="ClientShop" participant="Client"
participantPortType="ClientPT"/>
 </sequence>
 </choice>
</protocolType>

The protocol specification from the Client’s perspective, could look something like:
<protocolType name="loginAndPurchase">
 <self type="Client"/>
 <participant name="LoginService" type="tns:LoginService"/>
 <participant name="Shop" type="tns:Shop"/>
 <sequence>
 <send operation="login" portType="LoginService" participant="LoginService"
participantPortType="LoginServicePT"/>
 <choice>
 <sequence>
 <receive operation="loginResult" content="boolean(//success)" portType="Client"
participant="LoginService" participantPortType="LoginServicePT"/>
 <send operation="order" portType="Shop" participant="Shop"
participantPortType="ShopPT"/>
 <receive operation="invoice" portType="Client" participant="Shop"
participantPortType="ShopPT"/>
 </sequence>
 <sequence>
 <receive operation="loginResult" content="boolean(//failure)"
portType="Client" participant="LoginService" participantPortType="LoginServicePT"/>
 <protocol ref="ClientRegister"/>
 <send operation="order" portType="Shop" participant="Shop"
participantPortType="ShopPT"/>
 <receive operation="invoice" portType="Client" participant="Shop"
participantPortType="ShopPT"/>
 </sequence>
 </choice>
 </sequence>
</protocolType>

<protocolType name="ClientRegister">
 <self type="tns:Client"/>
 <participant name="LoginService" type="tns:LoginService"/>
 <sequence>
 <send operation="register" portType="LoginService" participant="LoginService"
participantPortType="LoginServicePT"/>
 <choice>
 <receive operation="registerResult" content="boolean(//success)"
portType="Client" participant="LoginService" participantPortType="LoginServicePT"/>
 <!-- Recurse if the register operation fails -->
 <sequence>
 <receive operation="registerResult" content="boolean(//failure)"
portType="Client" participant="LoginService" participantPortType="LoginServicePT"/>
 <protocol ref="ClientRegister"/>
 </sequence>
 </choice>
 </sequence>
</protocolType>

Π-Calculus

(Shop Perspective)
CS(order) . (SC<invoice> + CS<invoiceException>)

(LoginService Perspective)

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

Service Specification Language 50

CLS(login) . LSC<loginResponse> . (0 + !(CLS(register) .
LSC(registerResponse)))

5.7.5. WS-Transaction Two Phase Commit

In this scenario, a 2PCommittable resource wishes to take part in a transaction
according to the semantics specified in the WS-Transaction specification. The
participant implements the 2PCParticipant interface and a 2PCCoordinator is used to
control the transaction. Full details of the protocol are available at: http://www-
106.ibm.com/developerworks/webservices/library/ws-transpec/

2PCCoordinaator 2PCParticipant

Service

Input-Only

Output-Only

Port link

UML Sequence diagrams for the possible conversations supported by the 2PC
Coordinator are shown below:

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

Service Specification Language 51

There are two participants, the 2PCCoordinator and the 2PCParticipant
<participantType name="twoPCCoordinator">
 <portType name="twoPCCoordinator" def="tns:twoPCCoordinatorPT"/>
 <portType name="twoPCParticipant" invdef="tns:twoPCParticipantPT"/>
</participantType>

<participantType name="twoPCParticipant">
 <portType name="twoPCParticipant" def="tns:twoPCParticipantPT"/>
 <portType name="twoPCCoordinator" invdef="tns:twoPCCoordinatorPT"/>
</participantType>

The Conversation offered by the 2PCCoordinator could look like:
<protocolType name="authenticate">
 <self type="tns:twoPCCoordinator"/>
 <participant name="twoPCParticipant" type="tns:twoPCParticipant"/>
 <choice>
 <sequence>
 <send operation="rollback" portType="twoPCParticipant"
participant="twoPCParticipant" participantPortType="twoPCParticipantPT"/>
 <receive operation="aborted" portType="twoPCCoordinator"
participant="twoPCParticipant" participantPortType="twoPCParticipantPT"/>
 </sequence>
 <receive operation="aborted" portType="twoPCCoordinator"

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

Service Specification Language 52

participant="twoPCParticipant" participantPortType="twoPCParticipantPT"/>
 <sequence>
 <send operation="prepare" portType="twoPCParticipant"
participant="twoPCParticipant" participantPortType="twoPCParticipantPT"/>
 <choice>
 <sequence>
 <send operation="rollback" portType="twoPCParticipant"
participant="twoPCParticipant" participantPortType="twoPCParticipantPT"/>
 <receive operation="aborted" portType="twoPCCoordinator"
participant="twoPCParticipant" participantPortType="twoPCParticipantPT"/>
 </sequence>
 <receive operation="read-only" portType="twoPCCoordinator"
participant="twoPCParticipant" participantPortType="twoPCParticipantPT"/>
 <receive operation="aborted" portType="twoPCCoordinator"
participant="twoPCParticipant" participantPortType="twoPCParticipantPT"/>
 <sequence>
 <receive operation="prepared" portType="twoPCCoordinator"
participant="twoPCParticipant" participantPortType="twoPCParticipantPT"/>
 <choice>
 <sequence>
 <send operation="commit" portType="twoPCParticipant"
participant="twoPCParticipant" participantPortType="twoPCParticipantPT"/>
 <receive operation="committed" portType="twoPCCoordinator"
participant="twoPCParticipant" participantPortType="twoPCParticipantPT"/>
 </sequence>
 <sequence>
 <send operation="rollback" portType="twoPCParticipant"
participant="twoPCParticipant" participantPortType="twoPCParticipantPT"/>
 <receive operation="aborted" portType="twoPCCoordinator"
participant="twoPCParticipant" participantPortType="twoPCParticipantPT"/>
 </sequence>
 </choice>
 </sequence>
 </choice>
 </sequence>
 </choice>
</protocolType>

As this is just a two way conversation, the 2PCParticipant side would be an inverse of
the 2PCCoordinator

(From 2PC Coordinator Perspective)
(<Rollback> . T . (Aborted)) +
(Aborted) +
(<Prepare> . (<Rollback> . T . (Aborted)) + (Read-only) + (Aborted) +
((Prepared) . T . ((<Commit> . (Committed)) + (<Rollback> .
(Aborted))))

5.7.6. Talisman Example

In this scenario, which is based on a well know Grid application, the Client may make
invocations on the service in a specific order, as follows: First they must call
‘createJob’, if this is successful they may call ‘run’, following a successful call to ‘run’
they can call ‘waitForResults’, which blocks till results are available and finally they
can call ‘getResults’. The ‘destroy’ operation may be called at any time after job
creation, nothing may be called after ‘destroy’. If a fault occurs then they can not carry
on with any operations with this job.

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

Service Specification Language 53

Talisman Client

Service

Input-Only/Input-Output port

Output-Only/Output-Input port

Port link

The port type involved in this scenario is:

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

Service Specification Language 54

<wsdl:portType name="Talisman">
 <wsdl:operation name="createJob" parameterOrder="in0">
 <wsdl:input message="intf:createJobRequest" name="createJobRequest"/>
 <wsdl:output message="intf:createJobResponse" name="createJobResponse"/>
 <wsdl:fault message="intf:SoaplabException" name="SoaplabException"/>
 </wsdl:operation>
 <wsdl:operation name="destroy" parameterOrder="in0">
 <wsdl:input message="intf:destroyRequest" name="destroyRequest"/>
 <wsdl:output message="intf:destroyResponse" name="destroyResponse"/>
 <wsdl:fault message="intf:SoaplabException" name="SoaplabException"/>
 </wsdl:operation>
 <wsdl:operation name="getResults" parameterOrder="in0">
 <wsdl:input message="intf:getResultsRequest" name="getResultsRequest"/>
 <wsdl:output message="intf:getResultsResponse" name="getResultsResponse"/>
 <wsdl:fault message="intf:SoaplabException" name="SoaplabException"/>
 </wsdl:operation>
 <wsdl:operation name="run" parameterOrder="in0">
 <wsdl:input message="intf:runRequest" name="runRequest"/>
 <wsdl:output message="intf:runResponse" name="runResponse"/>
 <wsdl:fault message="intf:SoaplabException" name="SoaplabException"/>
 </wsdl:operation>
 <wsdl:operation name="waitFor" parameterOrder="in0">
 <wsdl:input message="intf:waitForRequest" name="waitForRequest"/>
 <wsdl:output message="intf:waitForResponse" name="waitForResponse"/>
 <wsdl:fault message="intf:SoaplabException" name="SoaplabException"/>
 </wsdl:operation>
</wsdl:portType>

This scenario contains two types of participants:
<participantType name="Client">
 <portType name="User" invdef="tns:Talisman"/>
</participantType>

<participantType name="Server">
 <portType name="Provider" def="tns:Talisman"/>
</participantType>

The protocol specifications from the Server perspective could look something like:
<protocolType name="Destroy">
 <self type="tns:Server"/>
 <participant name="Client" type="tns:Client"/>
 <serviceInput operation="destroy" portType="Talisman" participant="Client"
participantPortType="User">
 <choice>
 <serviceOutput/>
 <serviceFault name="destroyFault"/>
 </choice>
 </serviceInput>
</protocolType>

<protocolType name="Seqret">
 <serviceInput operation="create" portType="Talisman" participant="Client"
participantPortType="User"/>
 <choice>
 <serviceFault name="createFault"/>
 <sequence>
 <serviceOutput/>
 <choice>
 <protocol ref="Destroy"/>
 <serviceInput operation="run" portType="Talisman" participant="Client"
participantPortType="User">
 <choice>
 <serviceFault name="runFault"/>
 <sequence>
 <serviceOutput/>
 <choice>
 <protocol ref="Destroy"/>
 <serviceInput operation="waitFor" portType="Talisman"
participant="Client" participantPortType="User"/>
 <choice>
 <serviceFault name="waitForFault"/>

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

Service Specification Language 55

 <sequence>
 <serviceOutput/>
 <choice>
 <protocol ref="Destroy"/>
 <serviceInput operation="getResults" portType="Talisman"
participant="Client" participantPortType="User"/>
 <choice>
 <serviceFault name="getResultsFault"/>
 <sequence>
 <serviceOutput/>
 <protocol ref="Destroy"/>
 </sequence>
 </choice>
 </serviceInput>
 </choice>
 </sequence>
 </choice>
 </serviceInput>
 </choice>
 </sequence>
 </choice>
 </serviceInput>
 </choice>
 </sequence>
 </choice>
 </serviceInput>
</protocolType>

5.8. Schemas

XML Schema for WSDL extensibility elements:
<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema targetNamespace="http://schemas.adapt.eu.org/service-protocol-defintion-
1.0/" xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:tns="http://schemas.adapt.eu.org/service-protocol-defintion-1.0/"
elementFormDefault="qualified" attributeFormDefault="unqualified">
 <xsd:element name="protocol" type="tns:ProtocolType"/>
 <xsd:complexType name="ProtocolType">
 <xsd:sequence>
 <xsd:element name="self" type="tns:SelfType"/>
 <xsd:element name="participant" type="tns:ParticipantType" minOccurs="0"
maxOccurs="unbounded"/>
 </xsd:sequence>
 <xsd:attribute name="type" type="xsd:QName"/>
 </xsd:complexType>
 <xsd:complexType name="SelfType">
 <xsd:sequence>
 <xsd:element name="portType" type="tns:PortTypeType" maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="ParticipantType">
 <xsd:sequence>
 <xsd:element name="participant" type="tns:PortTypeType" maxOccurs="unbounded"/>
 </xsd:sequence>
 <xsd:attribute name="name" type="xsd:NCName"/>
 </xsd:complexType>
 <xsd:complexType name="PortTypeType">
 <xsd:attribute name="name" type="xsd:NCName"/>
 <xsd:attribute name="port" type="xsd:QName"/>
 </xsd:complexType>
</xsd:schema>

XML Schema for interaction constraints.
<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema targetNamespace="http://schemas.adapt.org/interaction-constraints-
definition-1.0/" xmlns:tns="http://schemas.adapt.org/interaction-constraints-definition-
1.0/" xmlns:xsd="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified"
attributeFormDefault="unqualified">
 <xsd:element name="interactionConstraints" type="tns:InteractionConstraintsType"/>
 <!-- Interaction constraints type -->

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

Service Specification Language 56

 <xsd:complexType name="InteractionConstraintsType">
 <xsd:sequence>
 <xsd:element name="participantType" type="tns:ParticipantTypeType"
minOccurs="0" maxOccurs="unbounded"/>
 <xsd:element name="protocolType" type="tns:ProtocolTypeType" minOccurs="0"
maxOccurs="unbounded"/>
 </xsd:sequence>
 <xsd:attribute name="targetNamespace" type="xsd:anyURI" use="optional"/>
 </xsd:complexType>
 <!-- Participant and protocol types -->
 <xsd:complexType name="ParticipantTypeType">
 <xsd:sequence>
 <xsd:element name="portType" type="tns:PortTypeType" maxOccurs="unbounded"/>
 </xsd:sequence>
 <xsd:attribute name="name" type="xsd:NCName" use="required"/>
 </xsd:complexType>
 <xsd:complexType name="PortTypeType">
 <xsd:attribute name="name" type="xsd:NCName" use="required"/>
 <xsd:attribute name="def" type="xsd:QName" use="optional"/>
 <xsd:attribute name="invdef" type="xsd:QName" use="optional"/>
 </xsd:complexType>
 <xsd:complexType name="ProtocolTypeType">
 <xsd:sequence>
 <xsd:element name="self" type="tns:SelfType"/>
 <xsd:element name="participant" type="tns:ParticipantType"
maxOccurs="unbounded"/>
 <xsd:group ref="tns:ActionType" minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
 <xsd:attribute name="name" type="xsd:NCName" use="required"/>
 </xsd:complexType>
 <xsd:complexType name="SelfType">
 <xsd:attribute name="type" type="xsd:QName" use="required"/>
 </xsd:complexType>
 <xsd:complexType name="ParticipantType">
 <xsd:attribute name="name" type="xsd:NCName" use="required"/>
 <xsd:attribute name="type" type="xsd:QName" use="required"/>
 <xsd:attribute name="abstract" type="xsd:boolean" use="optional" default="false"/>
 </xsd:complexType>
 <xsd:complexType name="ProtocolRefType">
 <xsd:sequence>
 <xsd:element name="participant" minOccurs="0" maxOccurs="unbounded">
 <xsd:complexType>
 <xsd:attribute name="name" type="xsd:NCName"/>
 <xsd:attribute name="ref" type="xsd:QName"/>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 <xsd:attribute name="ref" type="xsd:QName" use="required"/>
 </xsd:complexType>
 <!-- Structuring action types -->
 <xsd:complexType name="SequenceType">
 <xsd:group ref="tns:ActionType" minOccurs="2" maxOccurs="unbounded"/>
 </xsd:complexType>
 <xsd:complexType name="ChoiceType">
 <xsd:group ref="tns:ActionType" minOccurs="2" maxOccurs="unbounded"/>
 </xsd:complexType>
 <xsd:complexType name="ParallelType">
 <xsd:group ref="tns:ActionType" minOccurs="2" maxOccurs="unbounded"/>
 </xsd:complexType>
 <xsd:complexType name="MultipleType">
 <xsd:group ref="tns:ActionType"/>
 </xsd:complexType>
 <xsd:simpleType name="NothingType">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value=""/>
 </xsd:restriction>
 </xsd:simpleType>
 <!-- Asynchronous interaction types -->
 <xsd:complexType name="SendType">
 <xsd:attributeGroup ref="tns:InteractionAttributes"/>
 <xsd:attributeGroup ref="tns:XpathAttributes"/>
 </xsd:complexType>
 <xsd:complexType name="ReceiveType">
 <xsd:attributeGroup ref="tns:InteractionAttributes"/>
 <xsd:attributeGroup ref="tns:XpathAttributes"/>
 </xsd:complexType>
 <!-- Synchronous interaction types for the recipient side of the call -->

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

Service Specification Language 57

 <xsd:complexType name="InvokeOutputType">
 <xsd:group ref="tns:ActionType" maxOccurs="unbounded"/>
 <xsd:attributeGroup ref="tns:InteractionAttributes"/>
 <xsd:attributeGroup ref="tns:XpathAttributes"/>
 </xsd:complexType>
 <xsd:complexType name="InvokeInputType">
 <xsd:attributeGroup ref="tns:XpathAttributes"/>
 </xsd:complexType>
 <xsd:complexType name="InvokeFaultType">
 <xsd:attribute name="name" type="xsd:NCName" use="required"/>
 <xsd:attributeGroup ref="tns:XpathAttributes"/>
 </xsd:complexType>
 <!-- Synchronous interaction types for the initiating side of the call -->
 <xsd:complexType name="ServiceInputType">
 <xsd:group ref="tns:ActionType"/>
 <xsd:attributeGroup ref="tns:InteractionAttributes"/>
 <xsd:attributeGroup ref="tns:XpathAttributes"/>
 </xsd:complexType>
 <xsd:complexType name="ServiceOutputType">
 <xsd:attributeGroup ref="tns:XpathAttributes"/>
 </xsd:complexType>
 <xsd:complexType name="ServiceFaultType">
 <xsd:attribute name="name" type="xsd:NCName" use="required"/>
 <xsd:attributeGroup ref="tns:XpathAttributes"/>
 </xsd:complexType>
 <!-- Interaction attributes -->
 <xsd:attributeGroup name="InteractionAttributes">
 <xsd:attribute name="operation" type="xsd:NCName" use="required"/>
 <xsd:attribute name="portType" type="xsd:NCName" use="required"/>
 <xsd:attribute name="participant" type="xsd:NCName" use="required"/>
 <xsd:attribute name="participantPortType" type="xsd:NCName" use="required"/>
 <xsd:attribute name="participantOperation" type="xsd:NCName" use="optional"/>
 </xsd:attributeGroup>
 <!-- Attributes for selecting content of messages -->
 <xsd:attributeGroup name="XpathAttributes">
 <xsd:attribute name="content" type="xsd:string" use="optional"/>
 <xsd:attribute name="participantBindingName" type="xsd:NCName" use="optional"/>
 <xsd:attribute name="participantBindingContent" type="xsd:string" use="optional"/>
 </xsd:attributeGroup>
 <!-- Action type -->
 <xsd:group name="ActionType">
 <xsd:choice>
 <xsd:element name="sequence" type="tns:SequenceType"/>
 <xsd:element name="choice" type="tns:ChoiceType"/>
 <xsd:element name="parallel" type="tns:ParallelType"/>
 <xsd:element name="multiple" type="tns:MultipleType"/>
 <xsd:element name="nothing" type="tns:NothingType"/>
 <xsd:element name="send" type="tns:SendType"/>
 <xsd:element name="receive" type="tns:ReceiveType"/>
 <xsd:element name="invokeOutput" type="tns:InvokeOutputType"/>
 <xsd:element name="invokeInput" type="tns:InvokeInputType"/>
 <xsd:element name="invokeFault" type="tns:InvokeFaultType"/>
 <xsd:element name="serviceInput" type="tns:ServiceInputType"/>
 <xsd:element name="serviceOutput" type="tns:ServiceOutputType"/>
 <xsd:element name="serviceFault" type="tns:ServiceFaultType"/>
 <xsd:element name="protocol" type="tns:ProtocolRefType"/>
 </xsd:choice>
 </xsd:group>
</xsd:schema>

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

Service Specification Language 58

References

[1] Web Services Description Language (WSDL) 1.1 (http://www.w3.org/TR/wsdl)

[2] R.Milner, Communicating and Mobile Systems: The π-Calculus, Cambridge
University Press, 1999

[3] xCBL Order Management Use Case (http://www.xcbl.org)

[4] XML Path Language (XPATH) (http://www.w3.org/TR/xpath)

[5] Web Service Transactions (WS-T)

 (http://www-106.ibm.com/developerworks/webservices/library/ws-transpec/)

[6] Web Service Coordination (WS-C)

(http://www-106.ibm.com/developerworks/library/ws-coor/)

[7] Business Process Execution Language for Web Service (BPEL4WS)

 (http://www.ibm.com/developerworks/library/ws-bpel/)

[8] Web Service Choreography Interface (WSCI) (http://www.w3.org/TR/wsci/)

[9] Web Service Conversation Language (WSCL) 1.0 (http://www.w3.org/TR/wscl10/)

[10] Web Services Choreography Working Group, web site

 (http://www.w3.org/2002/ws/chor/)

[11] W3C XML Schema Part 1: Structures (http://www.w3.org/TR/xmlschema-1/)

[12] W3C XML Schema Part 2: Data-types (http://www.w3.org/TR/xmlschema-2/)

[13] ANSI X3.135-1992, American National Standard for Information

Systems – Database Language – SQL, Nov 1992.

[14] A. ShaikAli, O. F. Rana, R. Al-Al, D. W. Walker. UDDIe: An Extended Registry
for Web Services.

[15] OASIS. UDDI Specification. Version 3.
http://www.uddi.org/specification.html

[16] OASIS. Using WSDL in a UDDI Registry. Version 1.08. Nov. 2002.

[17] OASIS. Business Transaction Protocol (BTP).

[18] BEA, IBM, Microsoft. Web Service Transaction (WS-Transaction), Aug. 2002.

[19] Arjuna, Oracle, Sun. Web Service Coordination Activity Framework (WS-CAF),
Aug. 2003.

[20] M. P. Herlihy and J. M. Wing. Linearizability: A correctness condition for
concurrent objects. ACM Transactions on Programming Languages and Systems,
12(3):463-492, July 1990.

[21] Farrell and Kreger. Web services management approaches, IBM Systems Journal
vol 41, n. 2, 2002.

[22] Oracle. Concurrency Control, Transaction Isolation and Serializability in SQL92
and Oracle7, July 1995.

[23] OMG. CORBA Object Transaction Service (OTS).

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

Service Specification Language 59

[24] Alejandro P. Buchmann, M. Tamer Özsu, Dimitrios Georgakopoulos, Frank
Manola: A Transaction Model for Active Distributed Object Systems. Database
Transaction Models for Advanced Applications 1992, pp. 123-158.

[25] Sharad Mehrotra, Rajeev Rastogi, Henry F. Korth, Abraham Silberschatz: A
Transaction Model for Multidatabase Systems. ICDCS 1992, pp. 56-63.

[26] Aidong Zhang, Marian H. Nodine, Bharat K. Bhargava, Omran A. Bukhres:
Ensuring Relaxed Atomicity for Flexible Transactions in Multidatabase Systems.
SIGMOD Conference 1994, pp. 67-78.

[27] Victor, B and Moller, F. The Mobility Workbench: A tool for the Π-Calculus.
http://www.lfcs.informatics.ed.ac.uk/reports/94/ECS-LFCS-94-285/

[28] Deliverable 7: Composition Language. Adapt Project Deliverable, September 2003

