

ADAPT
IST-2001-37126

Middleware Technologies for Adaptive and

Composable Distributed Components

Project funded by the
European Commission under the
Information Society Technology

Programme of the 5th Framework
(1998-2002)

Evaluation Plan

Deliverable Identifier: D15
Delivery Date: 20th March 2003
Classification: Public Circulation
Authors: Stuart Wheater, Jim Webber, Mark Little
Document version: 1.0 20th March 2003

Contract Start Date: 1 September 2002
Duration: 36 months
Project coordinator: Universidad Politécnica de Madrid (Spain)
Partners: Universitá di Bologna (Italy), ETH Zürich (Switzerland), McGill

University (Canada), Universitá degli Studi di Trieste (Italy),
University of Newcastle (UK), Arjuna Technologies Ltd (UK)

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

Evaluation Plan 2

Contents

1 ADAPT Evaluation Plan .. 4

1.1 Strategy for Evaluating Functional Capabilities and Attributes....................... 4
1.2 Strategy for Evaluating Non-Functional Capabilities and Attributes............... 5
1.3 Evolution for the Evaluation Plan .. 5

2 Analysis of Existing and Proposed Technologies .. 6
2.1 Java 2 Platform, Enterprise Edition (J2EE).. 6

2.1.1 Summary... 6
2.1.2 Relevant Capabilities and Attributes .. 8
2.1.3 Evaluation Questions.. 8

2.2 Business Transaction Protocol (BTP)... 8
2.2.1 Summary... 8
2.2.2 Relevant Capabilities and Attributes .. 9
2.2.3 Evaluation Questions.. 9

2.3 Web Services Transaction (WS-Transaction) and Web Services Coordination
(WS-Coordination) ... 9

2.3.1 Summary... 9
2.3.2 Relevant Capabilities and Attributes .. 10
2.3.3 Evaluation Questions.. 11

2.4 Business Process Execution Language for Web Services (BPEL4WS)......... 11
2.4.1 Summary... 11
2.4.2 Relevant Capabilities and Attributes .. 13
2.4.3 Evaluation Questions.. 13

2.5 Web Services Choreography Interface (WSCI) ... 13
2.5.1 Summary... 13
2.5.2 Relevant Capabilities and Attributes .. 14
2.5.3 Evaluation Questions.. 14

2.6 Web Services Flow Language (WSFL).. 14
2.6.1 Summary... 14
2.6.2 Relevant Capabilities and Attributes .. 15
2.6.3 Evaluation Questions.. 15

2.7 Microsoft’s XLANG... 15
2.7.1 Summary... 15
2.7.2 Relevant Capabilities and Attributes .. 16
2.7.3 Evaluation Questions.. 16

2.8 Web Services Conversation Language (WSCL) .. 16
2.8.1 Summary... 16
2.8.2 Relevant Capabilities and Attributes .. 16
2.8.3 Evaluation Questions.. 16

2.9 Web Services Description Language (WSDL)... 17
2.9.1 Summary... 17
2.9.2 Relevant Capabilities and Attributes .. 19
2.9.3 Evaluation Questions.. 19

2.10 Web Service Security (WS-Security) ... 19
2.10.1 Summary... 19
2.10.2 Relevant Capabilities and Attributes .. 20
2.10.3 Evaluation Questions.. 20

2.11 Universal Description, Discovery and Integration (UDDI)............................ 20

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

Evaluation Plan 3

2.11.1 Summary... 20
2.11.2 Relevant Capabilities and Attributes .. 21
2.11.3 Evaluation Questions.. 21

2.12 OMG Interface Definition Language (OMG IDL)... 21
2.12.1 Summary... 21
2.12.2 Relevant Capabilities and Attributes .. 21
2.12.3 Evaluation Questions.. 22

2.13 CORBA Interface Repository (CORBA IR) .. 22
2.13.1 Summary... 22
2.13.2 Relevant Capabilities and Attributes .. 22
2.13.3 Evaluation Questions.. 22

3 References .. 22

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

Evaluation Plan 4

1 ADAPT Evaluation Plan
The purpose of this document is to set out a plan for evaluating the results of the
ADAPT project. This evaluation plan will be used to not only to evaluate the project but
also to serve as a guide during the project.

1.1 Strategy for Evaluating Functional Capabilities and Attributes
The strategy for evaluating the results of the ADAPT project is to identify the key
technical goals of the project, then based on these goals, to compare the technical
capabilities and attributes of the ADAPT approach with those of a selected set of
existing and proposed technologies. These comparisons leading to question which can
by used to evaluate the results of the ADAPT project. The key technical goals of the
ADAPT project have been identified as to make advances in support for:

• Availability

• Scalability

• Performance

• Service description

• Composability

• Configuration

• Adaptation

• Process definition

• Replication

• Security

• Transaction models

Many of these technical goals are related, such as composability and configuration, but
this list covers the key technical goals of the ADAPT project.

The set of selected existing and proposed technologies that have been analyzed are:

• Java 2 Platform, Enterprise Edition (J2EE)

• Business Transaction Protocol (BTP)

• Web Services Transactions (WS-Transaction) and Web Services Coordination (WS-
Coordination)

• Business Process Execution Language for Web Service (BPEL4WS)

• Web Service Choreography Interface (WSCI)

• Web Service Flow Language (WSFL)

• Microsoft’s XLANG

• Web Service Conversation Language (WSCL)

• Web Service Description Language (WSDL)

• Web Service Security (WS-Security)

• Universal Description, Discovery and Integration (UDDI)

• OMG Interface Definition Language (OMG IDL)

• CORBA Interface Repository (CORBA IR)

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

Evaluation Plan 5

In section 2 each of these technologies will be analyzed, and their functional capabilities
and attributes which are relevant to the ADAPT project are identified, and questions
which can be used to evaluate the functionality of the ADAPT project are derived.

1.2 Strategy for Evaluating Non-Functional Capabilities and
Attributes

Another aspect of the evaluation strategy is to identify and evaluate non-functional
capabilities and attributes. The main non-functional goals of the ADAPT project are in
the areas of Availability, Scalability and Performance. To allow the evaluation of the
Availability, Scalability and Performance of the ADAPT approach two series of
applications will be constructed.

The first series of applications will be used to compare the ADAPT platform with other
comparable J2EE platforms, including JBoss, the platform which has been augmented
with features to form the ADAPT platform. This series of applications will be used to
evaluate the Availability, Scalability and Performance of the ADAPT platform
compared to other platforms. To allow this, the series of applications will be required to
have the following characteristics:

• Simulate a realistic interaction pattern, between application and platform.

• Interact with all sub-systems modified as part of the ADAPT project.

• Expose an implementation that is based on standard APIs, so lessening the effort
required in porting between different platforms.

This series of applications will be used to answer evaluation questions such as:

• In the case of partial failure of machines on which an application is running, does
the ADAPT platform provide better availability that other platforms?

• As the number of clients of an application increases, does the ADAPT platform
provide better performance that other platforms?

• As the number of machines in the “cluster” on which an application runs increases,
does the ADAPT platform provide better performance that other platforms?

The second series of applications will be used to evaluate the feature enhancements
which are unique to the ADAPT platform, in particular those for adaptability. The
requirement of this series of applications will become clearer as the capabilities of the
ADAPT platform are specified.

1.3 Evolution for the Evaluation Plan
It is intended that this evaluation plan will evolve during the lifetime of the project. In
future versions of this document, additional goals for the projects may be identified, and
additional technologies analysed. Four possible technologies that may be included in a
future version of the evaluation plan are:

• Microsoft .Net [16]

• CORBA Component Model (CCM) [17]

• Java Management Extensions (JMX) [18]

• Grid Service [19] [20]

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

Evaluation Plan 6

The evaluation plan will also be updated to reflect technical decisions in the Composite
Service (CS) and Basic Service (BS) Architectures.

2 Analysis of Existing and Proposed Technologies

2.1 Java 2 Platform, Enterprise Edition (J2EE)

2.1.1 Summary
The Java 2 Platform, Enterprise Edition (J2EE) [2] is a collection a Java APIs that
support commonly used distributed computing technologies and network services. The
purpose of these APIs is to support the rapid development of Enterprise Applications. In
general, the implementer of an Enterprise Application has many different issues to
address, for example, providing Internet interfaces along with providing Intranet
interfaces, also having to accessing legacy applications and databases.

A typical J2EE Enterprise Application provides its Internet interfaces via web pages,
sometimes e-mail and in the future via Web services [1]. As for Intranet interfaces,
J2EE supports both remote procedure call and message oriented integration with legacy
applications and supports interaction with SQL based relational databases.

The J2EE APIs are numerous and provide an extensive set of functionality required to
construct Enterprise Applications. In the rest of this section the following J2EE APIs
will be briefly described:
• JDBC

• EJB

• Java IDL (CORBA)

• RMI

• JNDI

• JMS

• JTA

• Servlet/JSP

• JavaMail

The JDBC API allows a Java application to access relational databases, which may or
may not be remotely hosted. Through the JDBC API, applications can execute SQL
statements, retrieve results, and propagate changes back to a database. The designers of
JDBC have attempted to create a platform-neutral interface between database and
application, where database vendors or third-party developers providing a JDBC driver,
which is a set of classes that implements the required functions for a particular database.

Enterprise Java Beans (EJB) is a component model for units of business logic and
business data. The EJB model attempts to separate the beans, their container and the
server. The beans are provided by the application implementer, and three types of bean
are supported: session, entity and message-driven. Session beans are used to encapsulate
business logic; Entity beans are used to encapsulate business data; Message-driven
beans are used to support asynchronous interaction with business logic. The EJB
container manages a set of beans, handling such thing as: lifecycle management,
instance pooling, distributed transaction management and security. The EJB server itself
hosts the EJB containers.

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

Evaluation Plan 7

The Java IDL API provides an interface between Java application and distributed object
and services build using the Common Object Request Broker Architecture (CORBA). It
is possible that such distributed objects and services could be legacy applications.

The Java Remote Method Invocation (RMI) API is Java’s native scheme for creating
and using remote objects. Java RMI is “Java native” because it deals directly with Java
objects, this makes Java RMI particularly suitable for accessing remote EJBs.

The Java Naming and Directory Interface (JNDI) is an API that supports accessing
naming and directory services from Java applications. JNDI is an integral part of the
J2EE framework; it is used by J2EE components to access various runtime resources
such as the transaction manager, EJB home references and JDBC data sources.

The Java Messaging Service (JMS) provides an API for Java applications to perform
reliable asynchronous messaging. The JMS API is a portable interface between Java
applications and a native message-oriented middleware (MOM) system. This allows
Java applications to interact with legacy applications through the MOM system.

The Java Transaction API (JTA) allows Java applications to manage ACID transactions
based on the X/Open XA API for distributed transactions.

The Java Servlet API and JavaServer Pages (JSP) provide a standard way to extend
Web servers to support dynamic content generation. These two techniques though
related provide different approaches dynamic content generation. Java Servlet API
allows operations to be written which directly handle HTTP requests, and directly
generate content, usually HTML, as a response to the request. It is not unusual for this
generated content to contain information that has been obtained via EJBs from a
database. JSPs provide a higher-level approach; a JSP is usually HTML or XML that
has embedded within it special tags that cause fragments of Java to be executed. These
fragments of Java can cause HTML or XML to be generated that is specific to the
request.

The JavaMail API provides a platform and protocol-independent framework to build
Java applications that utilise Internet e-mail. This allows J2EE Enterprise Applications
to interact with users or other programs via e-mail.

As well as defining APIs, the J2EE standard also addresses issues such as deployment.
The structure of entities called WAR (Web Application aRchive) and EAR (Enterprise
Application aRchive) files are specified. WAR files contain static content such as
HTML files, along with JSP and the Java class required to generate dynamic content.
WAR files also contain a deployment descriptor, in XML, which specifies things such
as how to map a URL to a servlet and how to map a servlet to a Java class. EAR files
contain a collection WAR and JAR file that make up an enterprise application, along
with a deployment descriptor, in XML, which specifies such things as the “context root”
associated with a WAR file. Most J2EE platforms support redeployment of EAR and
WAR files, that is if an EAR or WAR needs to be updated, then all that is required is to
replace the existing file. The change will be spotted by the J2EE platform and the old
application will be replaced by the new version.

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

Evaluation Plan 8

2.1.2 Relevant Capabilities and Attributes
• Container managed transactions

• Container managed security

• Deployment descriptors

• Use of JNDI for component discovery

• Support for dynamic application updates

2.1.3 Evaluation Questions
• Does the ADAPT transaction model preclude the use of container managed

transactions, and is this a major disadvantage?

• Does the ADAPT security model preclude the use of container managed security,
and is this a major disadvantage?

• In J2EE deployment descriptors are complicated and hard to manage, if ADAPT has
deployment descriptors, are they simpler and easier to manage?

• In J2EE deployment descriptors are relatively static, if ADAPT has deployment
descriptors, are they more dynamic, and is this a major advantage?

• Does ADAPT allow dynamic application updates?

2.2 Business Transaction Protocol (BTP)

2.2.1 Summary
The Business Transaction Protocol (BTP) [3] is an OASIS specification designed to
provide reliable coordination of parties engaged in a business-level transaction.
Ratified to committee specification level in May 2002, BTP has the backing of several
large IT organizations including HP, BEA, Sun, and Oracle as well as a number of small
and medium-sized vendors.

BTP provides a common understanding and a way to communicate levels of
participation within transactions and limits on these levels between organizations. The
formal rules are necessary for the distribution of parts of business processes outside the
boundaries of an organization. BTP solves part of the problem for developers of loosely
coupled transactions—the coordination of services/participants to ensure a consistent
termination outcome. Expertise in the design of compensating actions is still required,
but these compensations are local rather than distributed.

BTP uses a two-phase completion protocol for transaction coordination. At termination
time, services participating in a transaction are asked up-front to state their intention
(whether they will proceed with the transaction or whether they are not prepared to do
so), and will later be instructed by the transaction manager to either proceed or not
based on the analysis of all of the collected intentions. In order to satisfy its
requirements, BTP supports two distinct transactions models, which are:

• Atoms: Similar to traditional atomic transactions where all Web services
participating in an Atom are guaranteed to see the same outcome as all of the other
participants: the outcome is atomic.

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

Evaluation Plan 9

• Cohesions: Which allow business logic to dictate which combination of
participating services succeed, while permitting the transaction as a whole to make
forward progress – this allows the business transaction to proceed even in the
presence of failures.

Cohesions allow us to pick groups of participating services (known as the confirm set)
that we would eventually like to reach completion: unlike an atom, not all participants
need see the same outcome for the transaction, i.e., atomicity is relaxed.

The BTP transaction coordinator is not as dictatorial as its equivalents in other
transaction management models: the BTP model recognizes the possibility that other
parts of an application might need to influence the decision making process required to
complete a transaction. In addition, BTP supports runtime negotiation of quality of
service characteristics based on the exchange of qualifiers. Qualifiers are the
mechanism which enables the bilateral exchange of protocol “small print” between
participants and coordinators. In essence, each BTP message allows the sender to tag
qualifiers that describe such things as, “I will be prepared for the next ten minutes, and
after that I will unilaterally cancel” and “You must be available for at least the next 24
hours to participate in this transaction.” Qualifiers are a valuable mechanism in Web
services transactions because in a loosely coupled environment, it is extremely useful to
know that the party you’re communicating with will only be around for so long, or to be
able to specify that your party won’t hang around while others procrastinate.

2.2.2 Relevant Capabilities and Attributes
• Support for Atoms (a.k.a. BTP Atomic Transactions)

• Support for Cohesions (a.k.a. Cohesive Business Transactions)

• Support for Qualifiers

2.2.3 Evaluation Questions
• Through cohesions BTP supports non-atomic transactions, does ADAPT provide

support for non-atomic transactions?

• BTP does not address the security of the transaction protocol, how does ADAPT
address security of the transaction protocol?

• Through qualifiers BTP’s transaction participants can dynamically negotiate their
relationship to the coordinator, does ADAPT’s transaction model provide a
corresponding capability?

2.3 Web Services Transaction (WS-Transaction) and Web Services
Coordination (WS-Coordination)

2.3.1 Summary
The purpose of the combined Web Services Transaction (WS-Transaction) [4] and Web
Services Coordination (WS-Coordination) [5] specifications is to provide a standard for
conducting transactions over Web services. The WS-Transaction and WS-Coordination
specifications were published by IBM, Microsoft and BEA in August 2002, and are
intended to be a competitor to the Business Transaction Protocol (BTP) [3]
specification.

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

Evaluation Plan 10

The current WS-Transaction and WS-Coordination specifications are lacking details
that would be required to construct interoperable implementation, which are based
purely on these specifications. The authors of these specifications have stated that it is
their intention to submit them to a standards body such as W3C or OASIS.

The WS-Coordination specification describes an extensible framework for providing
protocols that coordinate the actions of distributed applications. The framework consists
of two simple message-oriented request-response protocols for Activation and
Registration. Being message-oriented the request and response are separated into two
one-way invocations.

The Activation protocol specifies how an application can request a coordination context
from an activation service, for a specified coordination type. The returned coordination
context will contain, at least, a unique identifier for the context, the coordination type,
and the endpoint address of the registration service for that context. This coordination
context can be passed between applications so allowing other application to register
with the registration service for the context.

The Registration protocol specifies how an application can request that a registration
service includes the application as a participant in the protocol associated with the
context. As part of the registration protocol the application sends to the registration
service its participant endpoint address, in response the registration service responds
with the context’s protocol coordinator’s endpoint address.

Building on WS-Coordination, the WS-Transaction specification describes two
coordination types Atomic Transactions and Business Activities. Associated with the
Atomic Transaction coordination type are five simple message-oriented protocols for
Completion, Completion with Acknowledgement, Phase Zero, Two-Phase Commit and
Outcome Notification. Associated with the Business Activity coordination type are two
simple message-oriented protocols for Business Agreement and Business Agreement
with Complete.

The Atomic Transaction protocols provide support for standard all-or-nothing ACID
transactions. Through the Completion and Completion with Acknowledgement protocols
participants can request the terminations, commit or abort, of a transaction. If “with
acknowledgement” the participant must acknowledgement receipt of the final outcome
before the corresponding coordinator can safely forget the transaction. The final
outcome of a transaction can also be requested using the Outcome Notification protocol.
If a participant wishes to participate in the transaction as a resource the Phase Zero and
Two-Phase Commit protocols are available.

The Business Activity protocols provide support for handling long-lived activities and
the desire to apply business logic to handle business exceptions. The protocols allow a
coordinator to control a participant within a business activity, for example, the
coordinator can request that the activity abandon its work in some appropriate way, or
after completion the coordinator can request compensation be performed.

2.3.2 Relevant Capabilities and Attributes
• Separation of “transaction protocols” and “activation and registration protocols”.

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

Evaluation Plan 11

• Support for ACID transactions.

• Support for long-lived activates.

• Asynchronous message-oriented interaction model.

2.3.3 Evaluation Questions
• How does ADAPT support long-lived activities?

• Does ADAPT support message-oriented interaction with its transaction
infrastructure?

2.4 Business Process Execution Language for Web Services
(BPEL4WS)

2.4.1 Summary
The purpose of Business Process Execution Language for Web Service (BPEL4WS) [6]
is to provide a standard for specifying business process behaviour and business process
interactions, for applications composed from Web services. The BPEL4WS
specification was published by IBM, Microsoft and BEA in July 2002, and is intended
to supersede the XLANG [9] and WSFL [8] specification.

The BPEL4WS integration model is that business partners interact through peer-level
conversations, using both synchronous and asynchronous messages. These
conversations are carried out between the partners using specified sets of Web services.
The conversations are coordinated within a partner by a business process.

From the business process perspective, the services provided by other partners and the
services expected by partners are specified as a set of service links. The service links, an
extension of WSDL [11], are used to model the peer-to-peer partner relationships.
Service links define the shape of a relationship with a partner by defining the messages
and interfaces (WSDL port types) used in the interactions in both directions.

Associated with each business process instance is a state, this state is comprised of a set
of containers that contain messages. Containers can be used as the destination of
received message or invocation results or the source of a reply message or invocation
parameters. The contents of a container can be also be accessed by certain basic
activities, such as assign and switch.

The behaviour of a business process is specified using a set of activities. The execution
of theses activities is structured using certain “structured activities”: sequence, switch,
pick, while, flow and scope.

• sequence activity: this activity contains one or more activities that are executed
sequentially;

• switch activity: this activity contains an ordered list of one or more conditions and
activity pairs. The conditions are considered in order and the first condition that
evaluates to true has its associated activity executed. In the case where no condition
holds true a default “otherwise activity” can be specified;

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

Evaluation Plan 12

• while activity: this activity repeatedly executes an activity while its condition is
true.

• pick activity: this activity contains an ordered list of one or more event and activity
pairs. It awaits the occurrence of these events, and then executes the associated
activity. Only one activity will be executed, even if multiple applicable events
occur. The events which can be monitored are either “message events” or “alarm
events”.

• flow activity: this activity provides concurrent execution the set of contained
activities. These activities, and their sub-activities, can be “linked” to form “must
occur before” relationships between activities.

• scope activity: this activity allows the contained activity to be associated with its
own fault handlers and compensation handler.

To support communication with external Web services, three communication activities
are provided: receive, reply, invoke.

• receive activity: this activity is used to wait for a particular message type from a
particular partner, and place the contents of the message into a container. A receive
activity can be flagged to create a process instance.

• reply activity: the activity is used to send a response to a request previously
accepted through a receive activity, the contents of the message being obtained from
a container.

• invoke activity: this activity can be used to invoke a service (either synchronous or
asynchronous) provided by a partner. The request message will be obtained from a
container, and if the invoke activity is synchronous, the response will be stored in a
container.

Other activities include assign, wait and empty, and error handling activities: throw,
terminate and compensate.

• assign activity: the activity can be used to assign (parts of) a message contained
within one container to an other container.

• wait activity: the activity is used to introduce delays for a certain period of time or
until a certain deadline is reached.

• empty activity: the activity can be used to introduce an activity that “does nothing.”
This activity can be useful within compensation handlers that are not required to
perform any changes.

• throw activity: the activity is used when a business process needs to signal an
internal fault explicitly.

• terminate activity: the activity can be used to immediately abandon all execution
within the current business process instance.

• compensate activity: the activity can be used to cause the initiation of compensation
on a scope that has already completed its execution normally.

BPEL4WS does not assume that each business process instance or service instance has
a distinct “endpoint,” or that interactions are based on a sophisticated transport
infrastructure that can identify the involved participants, instead it provides support for
“message correlation.” Message correlation enables message contents to be examined to

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

Evaluation Plan 13

identify involved business process, even over multiple conversations. If interactions are
based on a sophisticated message transport, message correlation may not be required.

2.4.2 Relevant Capabilities and Attributes
• Structured programming approach to process definition.

• Message correlation support.

• A centralized process coordination model.

• Compensation and exception handling constructs.

2.4.3 Evaluation Questions
• BPEL4WS process definition provides structured programming concepts, can

ADAPT process definition be mapped to structured programming concepts?

• BPEL4WS support message collection over multiple conversations, how does
ADAPT support coordination of such conversations?

• How does ADAPT support compensation and exception handling within processes?

• BPEL4WS only supports centralized process coordination, does ADAPT support
decentralized process coordination?

2.5 Web Services Choreography Interface (WSCI)

2.5.1 Summary
The Web Service Choreography Interface (WSCI) [7] is an XML-based interface
description language that describes the flow of messages exchanged by a web service
participating in choreographed interactions with other services. The WSCI specification
was authored by BEA Systems, Intalio, SAP AG and Sun Microsystems.

WSCI describes the observable behaviour of a Web service, but does not address the
definition and the implementation of the internal process. WSCI describes behaviour in
terms of temporal and logical dependencies among the exchanged messages, sequencing
rules, correlations, exception handling, and transactions.

WSCI's interface description language, which is based on XML, is used to capture the
modelling concepts of: interfaces, activities and choreographs of activities, processes
and units of reuse, properties, context, message correlation, exceptions, transactions and
compensation activities, and global model.

• Interfaces: The behaviour of a Web service is described as processes that are
contained within the interface. A Web service may expose multiple interfaces for
supporting multiple scenarios.

• Activities and choreographs of activities: The behaviour of the processes of
interfaces is described in terms of choreographed activities. Activities can be atomic
or complex. Atomic activities represent basic units of behaviour, such as sending
and receiving messages. Complex activities are recursively composed from other
activities. Complex activities support specific kinds of activity choreograph, such
as: sequential execution, parallel execution, looping and conditional execution.

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

Evaluation Plan 14

• Processes and units of reuse: The named units of behaviour in WSCI are processes,
and are described by activities. Process can be reused, by referencing their names.

• Properties: References to values within the interface definition are modelled by
properties. They are the equivalent of variables in imperative programming
languages.

• Context: Scopes containing activities are modelled by contexts. They manage such
thing as exception handling, and property definitions.

• Message correlation: To model the interrelationship between conversations WSCI
has introduced message correlation. Different conversations can be distinguished by
correlation instances, which are a set of properties' values.

• Exceptions: To model exceptional behaviour WSCI supports the definition of sets of
activities that will be executed in response to particular exceptional behaviour.

• Transactions and compensation activities: WSCI contexts can be associated with a
transaction. WSCI supports two models of transactional behaviour, atomic and
open-nested. Atomic transactions have the standard ACID transaction properties.
Open-nested transactions are composed of other transactions, which can be
themselves atomic or open-nested transactions. The rollback of open-nested
transactions is achieved by executing compensation activities.

• Global model: WSCI also allows modelling a multi-participant view of the overall
message exchange by means of a global model. A global model is described by a
collection of interfaces of the participant services, and a collection of links between
the operations of the participant services.

2.5.2 Relevant Capabilities and Attributes
• Structured programming approach to process message exchange modelling.

• Compensation and exception modelling constructs.

2.5.3 Evaluation Questions
• Does ADAPT support the modelling of conversations?

• Does ADAPT support the modelling of compensation and exception handling in
conversations?

2.6 Web Services Flow Language (WSFL)

2.6.1 Summary
The Web Services Flow Language (WSFL) [8] is an XML language for the description
of Web services compositions. The WSFL 1.0 specification was published by IBM in
May 2001, and has how been superseded by the BPEL4WS specification [6].

WSFL is intended to support two approaches to modelling Web service composition:
Flow Models and Global Models. A Flow Model of composition is based on describing
how to use the functionality provided by a collection of Web services. WSFL models
these compositions by specified the flow of control and data between Web services. A
Global Model of composition is based on describing how a collection of Web services
interacts. The interactions are modelled as links between endpoints of the Web services’

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

Evaluation Plan 15

interfaces, each link corresponding to the interaction of one Web service with an
operation of another Web service’s interface. Both Flow Models and Global Models
support recursive composition, where Web service compositions can itself be provided
as a Web service.

The WSFL specification describes the concepts of its models using a metamodel. The
metamodel describes the entities that make up the models, and their interrelationships.

2.6.2 Relevant Capabilities and Attributes
• Flow model based composition.

• Global model based composition.

• Composition metamodel.

2.6.3 Evaluation Questions
• WSFL supports a flow model based composition, does ADAPT supports flow

model based composition?

• WSFL supports a global model based composition, does ADAPT supports global
model based composition?

• Would ADAPT benefit from having a composition metamodel?

2.7 Microsoft’s XLANG

2.7.1 Summary
The purpose of Microsoft’s XLANG specification [9] is to model the message exchange
behaviour among Web services, and is expected to serve as the basis for an automated
protocol engines that can track the state of process instances and help enforce protocol
correctness in message flows. The XLANG specification was published by Microsoft in
2001 and is widely deployed as part of the BizTalk orchestration server, but has how
been superseded by the BPEL4WS specification [6].

The goal of XLANG is to make it possible to formally specify business processes as
stateful long-running interactions. The specific of such business processes are done in
terms of the following:

• Sequential and parallel control flow constructs.

• Long running transactions with compensation.

• Custom correlation of messages.

• Flexible handling of internal and external exceptions.

• Modular behaviour description.

• Dynamic service referral.

• Multi-role contracts.

The XLANG approach to service description is to extend WSDL [11] service
descriptions with extension elements that describe the behavioural aspects of the
service. An example of such a behavioural description is:

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

Evaluation Plan 16

<wsdl:service name="TransferService">
 . . .
 <xlang:behaviour xmlns:xlang="http://schemas.microsoft.com/biztalk/xlang/">
 <xlang:body>
 <xlang:sequence>
 <xlang:action operation="Debit" port="BankAccountA" activation="true"/>
 <xlang:action operation="Credit" port="BankAccountB"/>
 </xlang:sequence>
 </xlang:body>
 </xlang:behavior>
</wsdl:service>

2.7.2 Relevant Capabilities and Attributes
• Formally specify business processes.

• Support for stateful long-running interactions.

• Support for behavioural description of services?

2.7.3 Evaluation Questions
• Does ADAPT services descriptions contain behavioural information?

2.8 Web Services Conversation Language (WSCL)

2.8.1 Summary
The purpose of Web Service Conversation Language (WSCL) [10] is to provide a
standard for specifying business level conversations. WSCL provides an XML schema
for specifying business level conversations that take place at a single Web service. The
WSCL specification was published as a W3C note by Hewlett-Packard in March 2002.

The WSCL notion of a conversation is a series of message exchanged between a
service-consumer and a service-provider. The WSCL specification models a
conversation as a finite state machine where state changes are triggered by interactions.
An interaction is the exchange of one or two documents between a service-consumer
and a service-provider. The WSCI model supports five types of interactions Send,
Receive, SendReceive, ReceiveSend and Empty (the first four of which maps to the
WSDL notions of: one-way, notification, send-response and requested-response).

2.8.2 Relevant Capabilities and Attributes
• Conversation model

• Interaction model

2.8.3 Evaluation Questions
• WSCL models conversations at service endpoints, does ADAPT require a

conversation model?

• If ADAPT has a conversation model, does it have more powerful modelling
capabilities than WSCL finite state machine?

• If ADAPT has an interaction model, does it have more powerful modelling
capabilities than WSCL finite state machine?

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

Evaluation Plan 17

• The WSCL conversation model only addresses conversations between two parties at
a single endpoint, if ADAPT has a conversation model, does it address multi-party
conversations?

2.9 Web Services Description Language (WSDL)

2.9.1 Summary
The purpose of the Web Services Description Language (WSDL) [11] is to address the
need to describe network services. In WSDL, network service descriptions are
contained in XML documents, which defines both the abstract and concrete entities
required to specify network services in sufficient detail that they can be invoked, and
related to other network service.

The entities, which are encoded as XML elements within a WSDL document, are:

• types: contain data type definitions using some type system, normally XML
Schema.

• messages: are abstract definition of the content of messages being communicated.

• port types: are abstract definition of a set of operations supported by one or more
endpoints.

• bindings: contains the specification of concrete protocol and data format to
communicate.

• services: contain the specification of a collection of endpoints.

An illustration of the overall structure of a WSDL document, is given below:

<?xml version="1.0">

<wsdl:definitions name="..." targetNamespace="..." ...>
 <wsdl:types>...</wsdl:types> ?
 <wsdl:message name="...">...</wsdl:message> *
 <wsdl:portType name="...">...</wsdl:portType> *
 <wsdl:binding name="..." type="...">...</wsdl:binding> *
 <wsdl:service name="...">...</wsdl:service> *
</wsdl:definitions>

In the rest of this section the WSDL document elements, and their sub-elements, will be
described in more detail.

The purpose of the types elements within a WSDL document is to allow the definitions
of data types that can be included within messages. This is usually done using an XML
Schema, though it should be noted that eventual wire format messages might not be in
XML. The optional types element may be augmented by importing existing schemas
into the WSDL document. An example of a WSDL document’s types element is:

<wsdl:types>
 <xsd:scheme targetNamespace="http://example.com/job-control">
 <xsd:complexType name="NameValuePairType">
 <xsd:sequence>
 <xsd:element name="Name" type="xsd:string"/>
 <xsd:element name="Value" type="xsd:string"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:scheme>
</wsdl:types>

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

Evaluation Plan 18

Message elements are abstract definition of messages, which are exchanged between
endpoints. Messages consist of zero or more logical parts, which are analogous to
named and typed parameters. Each part is associated with a type from some type
system, possibly defined in the types elements. An example of a WSDL document’s
message element is:

<wsdl:message>
 <wsdl:part name="AccountNumber" type="tns:AccountNumberType"/>
 <wsdl:part name="Amount" type="xsd:integer"/>
</wsdl:message>

The purpose of the port type elements within a WSDL document is to allow the
definition of abstract endpoints. The abstract endpoint definition is in terms of a set of
operation elements. Each operation elements defines it name, and the message types
involved in the operation. Depending on the messages involved in the operation four
interaction models are supported:

• One-way: the endpoint receives a message.

• Request-response: the endpoint receives a message, and sends a correlated message.

• Solicit-response: the endpoint sends a message, and receives a correlated message.

• Notification: The endpoint sends a message.

Examples of port type elements, which are describing respectively: one-way, request-
response, solicit-response and notification, are given below:

<wsdl:portType name="JobControl">
 <wsdl:operation name="Shutdown">
 <wsdl:input message="tns:ShutdownRequest"/>
 </wsdl:operation>

 <wsdl:operation name="GetStatus">
 <wsdl:input message="tns:GetStatusRequest"/>
 <wsdl:output message="tns:GetStatusResponse"/>
 <wsdl:fault name="unknownService" message="tns:ErrorResponse"/>
 </wsdl:operation>

 <wsdl:operation name="AreYouAlive">
 <wsdl:output message="tns:AreYouAliveRequest"/>
 <wsdl:input message="tns:AreYouAliveResponse"/>
 <wsdl:fault name="unknownClient" message="tns:ErrorResponse"/>
 </wsdl:operation>

 <wsdl:operation name="Refresh">
 <wsdl:output message="tns:RefreshRequest"/>
 </wsdl:operation>
</wsdl:portType>

The purpose of the bindings elements are to define, for a particular port type, protocol
details for operations, and the message format for associated messages. The bindings
elements are extensible in that elements for other schemas can be introduced within the
bindings. Specifications exist for bindings for SOAP, HTTP and MIME. Through these
extensions the specifics of the protocol and message format can be specified for that
particular from of binding. In the example below the SOAP binding extensions have
been used:

<wsdl:binding name="JobControlSOAPBinding" type="tns:JobControl">
 <soap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http"/>
 <wsdl:operation name="GetStatus">
 <soap:operation soapAction=""/>
 <wsdl:input>
 <soap:body use="encoded" namespace="http://example.com/job-control"

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

Evaluation Plan 19

 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
 </wsdl:input>
 <wsdl:output>
 <soap:body use="encoded" namespace="http://example.com/job-control"
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
 </wsdl:output>
 </wsdl:operation>

 ...
</wsdl:binding>

In this example the protocol transport has been specified as HTTP, and that style of
messages is RPC (which embeds messages within an element with the same name as the
intended receiving method, as opposed to document which does not) and the messages
will be encoded using SOAP encoding (which uses the SOAP schema as opposed to
literal encoding where other arbitrary schemas are used).

The purpose of the service element is to define a set of network endpoints. Each
network endpoint is defined by a ports element. In the example bellow, a service is
specified containing a single network endpoint that is accessible at the specified URL,
and is associated with a SOAP binding.

<wsdl:service name="JobControlService">
 <wsdl:port name="JobControl" binding="tns:JobControlSOAPBinding">
 <soap:address location="http://ws.acme.com/axis/services/JobControlService"/>
 </wsdl:port>
</wsdl:service>

2.9.2 Relevant Capabilities and Attributes
• Interaction model.

• Service description.

• External protocol specification.

• External QoS specification.

• Extensible.

2.9.3 Evaluation Questions
• Does ADAPT require a minimal quality of service for invocation?

• WSDL supports a service-oriented specification, does ADAPT support object-
oriented specification of service?

• WSDL does not support inheritance in service specification, does ADAPT have
support for inheritance in service specification?

2.10 Web Service Security (WS-Security)

2.10.1 Summary
The Web Service Security (WS-Security) [12] provides a framework to enable
applications to construct secure SOAP message exchanges. The WS-Security 1.0
specification was published by IBM, Microsoft and VeriSign in April 2001.

The WS-Security specification describes enhancements to SOAP to allow message
integrity and message confidentiality to be implemented. The WS-Security

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

Evaluation Plan 20

enhancements are aimed to addressing two types of security threat: 1) messages being
modified or read by antagonists or 2) an antagonist sending messages to a service that,
while well-formed, lack appropriate security claims to warrant processing.

The WS-Security approach is to define the basic structure of a SOAP header for
attaching security information to a SOAP message, and specifying of how encrypted
information is encoded in a SOAP message. The types of security information that can
be attached to SOAP message in a WS-Security SOAP header are:

• User name and password information (UsernameToken element)

• Binary security tokens, for example, X.509 certificates and Kerberos tickets
(BinarySecurityToken element)

• References to security tokens what reside somewhere else and need to be “pulled”
by the receiving application (SecurityTokenReference element)

• Key information, such as X.509 certificates (KeyInfo element)

• Message signature (Signature element)

2.10.2 Relevant Capabilities and Attributes
• Support for message integrity.

• Support for message confidentiality.

2.10.3 Evaluation Questions
• Does ADAPT require message integrity, and if it does how is it supported?

• Does ADAPT require message confidentiality, and if it does how is it supported?

• Does ADAPT require access control, and if it does how is it supported?

2.11 Universal Description, Discovery and Integration (UDDI)

2.11.1 Summary
The Universal Description, Discovery and Integration (UDDI) [13] project’s purpose is
to provide standardized methods of publishing and discovering information about Web
services. The UDDI project is aiming to specify an open framework for describing
service, discovering businesses, and integrate business services.

Conceptually, a business can register three types of information in a UDDI registry:

• Basic contact information and unique identifiers about the company.

• Categorisation of the Web services provided by the company.

• Behavioural description of the Web services provided by the company.

The UDDI Business Registry (UBR), also know as the “Public Cloud” has been
deployed. The UBR is a decentralized registry in which the content is replicated over on
all the nodes that operate the UBR.

The UDDI project has specified a number of XML schemas and programming APIs to
allow publishing and discovery of information about business. The UDDI APIs are

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

Evaluation Plan 21

based on five primary UDDI data structures types: businessEntity, publisherAssertion,
businessService, bindingTemplate and tModel.

• businessEntity: contains the business’s basic information, including contact
information categorisation, description and identifiers.

• publisherAssertion: is used to indicate a relationships between two businesses
(businessEntitys). This relationship is only made public if both businesses endorse
the relationship.

• businessService: represent services provided by the business, both Web service and
manual services. A businessService can be associated with one or more
businessEntitys, and a businessEntity can contains one or more businessServices.

• bindingTemplate: contains pointers to the technical descriptions and the access
endpoint of a service. A businessService can contain one or more bindingTemplates.

• tModel: contains the abstract description of a particular specification or behaviour to
which the service adheres. A bindingTemplate can contain one or more tModels.

2.11.2 Relevant Capabilities and Attributes
• Support for publishing information about Web services.

• Support for discovering information about Web services.

2.11.3 Evaluation Questions
• Does ADAPT support mechanisms for publishing information about services?

• Does ADAPT support mechanisms for discovering information about services?

2.12 OMG Interface Definition Language (OMG IDL)

2.12.1 Summary
The OMG Interface Definition Language (OMG IDL) [14] is used to describe interfaces
of CORBA objects. These interface definitions specify the operations the objects is
equipped to execute, the input and output parameters required, and any exceptions that
may be thrown. An interface can be derived from another interface, which is called a
base interface of the derived interface. The derived interface supports all of the
operations of the base interface in addition to its own operations. CORBA IDL allows
interface definitions to be grouped into a module definition. An example of CORBA
IDL is given below:
module CallbackTest
{
 interface PingPong;

 typedef sequence<PingPong> PingPongSeq;

 interface PingPong
 {
 boolean oper(in long level, in PingPongSeq objects);
 };
};

2.12.2 Relevant Capabilities and Attributes
• Service interface specification.

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

Evaluation Plan 22

• Support of inheritance.

2.12.3 Evaluation Questions
• Does ADAPT support a human readable representation of a service specification?

• OMG IDL support inheritance in service specification, does ADAPT have support
for inheritance in service specification?

2.13 CORBA Interface Repository (CORBA IR)

2.13.1 Summary
The CORBA Interface Repository (CORBA IR) [16] is the component of the ORB that
provides persistent storage of interface definitions; it manages and provides access to a
collection of object definitions specified in OMG IDL. Interface definitions are
maintained in the Interface Repository as a set of objects that are accessible through a
set of OMG IDL specified interface definitions. An interface definition contains a
description of the operations it supports, including the types of the parameters,
exceptions it may raise, and context information it may use.

2.13.2 Relevant Capabilities and Attributes
• Service specification API.

2.13.3 Evaluation Questions
• Does ADAPT support an API to allow service specification to be inspected?

3 References
[1] “Developing Enterprise Web Services”, Sandeep Chatterjee and James Webber,

Prentice Hall, 2003.

[2] Java 2 Platform, Enterprise Edition Specification (http://java.sun.com/j2ee)

[3] OASIS Business Transaction Protocol (BTP), Committee Specification 1.0
(https://www.oasis-open.org/committees/business-transactions/)

[4] Web Services Transactions (WS-Transaction)
(http://www.ibm.com/developerworks/library/ws-transpec/)

[5] Web Services Coordination (WS-Coordination)
(http://www.ibm.com/developerworks/library/ws-coor/).

[6] Business Process Execution Language for Web Service (BPEL4WS)
(http://www.ibm.com/developerworks/library/ws-bpel/)

[7] Web Service Choreography Interface (WSCI) (http://www.w3.org/TR/wsci/)

[8] Web Service Flow Language (WSFL)
(http://www.ibm.com/software/solutions/webservices/pdf/WSFL.pdf)

[9] Microsoft’s XLANG
(http://www.gotdotnet.com/team/xml_wsspecs/xlang-c/default.htm)

[10] Web Service Conversation Language (WSCL) 1.0
(http://www.w3.org/TR/wscl10/)

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

Evaluation Plan 23

[11] Web Services Description Language (WSDL) 1.1 Specification
(http://www.w3.org/TR/wsdl)

[12] Web Services Security 1.0 (WS-Security)
(http://www-106.ibm.com/developerworks/webservices/library/ws-secure/)

[13] Universal Description, Discovery and Integration (UDDI) 3.0 Specification
(http://www.uddi.org/specification.html)

[14] OMG Interface Definition Language (OMG IDL)
(http://www.omg.org/cgi-bin/doc?formal/02-11-03)

[15] CORBA Interface Repository (CORBA IR)
(http://www.omg.org/cgi-bin/doc?formal/02-11-03)

[16] Microsoft .Net (http://www.microsoft.com/net/)

[17] CORBA Components (http://www.omg.org/cgi-bin/doc?formal/02-06-65)

[18] Java Management Extensions (JXM)
(http://java.sun.com/products/JavaManagement/)

[19] The Physiology of the Grid
(http://www.ggf.org/ogsi-wg/drafts/ogsa_draft2.9_2002-06-22.pdf)

[20] Grid Service Specification
(http://www.ggf.org/meetings/ggf6/ggf6_wg_papers/draft-ggf-ogsi-gridservice-
04_2002-10-04.pdf)

