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1 Introduction 
 
The composite services analysis tool has been developed to check the integrity of a 
process composed from a number of web services.  The tool analyses compositions 
described with the ADAPT Composition Language [1] for safety and liveliness 
properties; specifically that the composition is free from deadlocks, cycles and correctly 
uses of the services according to their semantic descriptions.  The analysis tool assumes 
that any required service semantics have been described using the Interaction 
Constraints language as described in the Service Specification Language [2]. 
 
Validation of a composition requires generating a model from the xml documents 
describing the composition and the services it uses.  The language used to describe the 
model is called Promela [3], which is a language used to describe communicating 
processes.  The Spin Model Checker [4] is then used to validate that the Promela model 
has the required safety and liveliness properties; any inconsistencies will be reported 
and the analysis tool creates a trail to illustrate the error to the composer.  The original 
plan was to use a π-calculus based analysis tool, as π-calculus was used for defining the 
semantics of the composition language and the interaction constraints language.  
However, in the absence of adequate tool support for checking π-calculus models, the 
decision was made to map the languages to Promela and use the Spin tool for 
validation. 
 
The remainder of this document is structured as follows:  Section 2 describes the basics 
of the Promela language used to validate the compositions; Section 3 introduces the 
ADAPT Composition Language used to describe the composite services; Section 4 
introduces the Interaction Constraints Language used to provide semantic information 
regarding the use of a web service; Section 5 describes how each of the components of a 
composition have been modelled in Promela; Section 6 illustrates the use of the 
Analysis Tool with a number of examples; Finally, section 7 describes further work 
necessary for this tool. 
 

2 Promela 
 
This section is an introduction to the Promela language; it outlines all of the language 
structures that have been used in the analysis tool.  Promela is an acronym for Process 
Meta-Language.  Promela is used to describe communicating systems in abstract terms, 
allowing the modelling of processes within the system in terms of the messages 
exchanged.  Computation is not considered and alternative routes through a process are 
chosen non-deterministically.  The basic elements of a Promela specification are 
asynchronous processes and typed communications channels.  There are very few 
computational methods available, making it difficult to describe the internals of an 
algorithm, but relatively easy to model client/server interactions. 
 
The most important element in the model is a process, not a function as in other 
languages.  Processes execute when instantiated and do not return any results; if a 
process is instantiated by another process then both will execute in parallel and will not 
rendezvous unless this behaviour is specified using channels.  A process is defined with 
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the ‘proctype’ keyword; if a process is defined as ‘active’ it will be instantiated 
automatically, otherwise it must be instantiated by another process.  This is an example 
of a process definition: 
 
active proctype my_process() 
{ 
  //Process internals here 
} 
 
Inter-process communication is achieved through channels, the types of message that 
may be sent across the channel are declared in the model.  A channel may be buffered or 
un-buffered; if a process tries to send a message on a channel with a full buffer then the 
process blocks until there is space in the buffer; similarly if a process tries to receive 
from a channel which contains no messages then the process blocks until there is a 
message to receive.  A channel may be polled to check whether or not it contains a 
message without consuming the message from the channel.  Here are some examples of 
channel usage: 
 
//Un-buffered channel declaration 
chan my_channel = [0] of {mtype}; 
 
//Declaration of a channel with a 3 slot buffer 
chan name = [3] of {mtype}; 
 
//Sending a message on a channel named my_channel 
my_channel!msg; 
 
//Receiving a message on a channel named my_channel 
my_channel?msg; 
 
//Polling a channel for a message 
my_channel?[msg]; 
 
Basic control flow is available using selection and repetition.  We can define a choice 
between different options using an ‘if’ statement.  Only one sequence from the options 
will be executed; if more than one option is possible then a non-deterministic choice 
will be made between the possible options.  The structure of a selection statement is 
shown below: 
 
if 
:: (x > 0) -> x--; 
:: (x < 0) -> x++; 
fi; 
 
Repetition is available with loops, using the ‘do’ keyword.  Sequences within a loop 
will be executed repeatedly, until a ‘break’ statement is found.  An example of a loop 
is shown below: 
 
do 
:: if 
   :: (x == 0) -> break; 
   :: (x < 0) -> x++; 
   :: (x > 0) -> x--; 
   fi; 
od; 
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Finally, labels may be used throughout a model with varying effects.  Labels may be 
used to mark positions in the model, allowing the use of ‘goto’ statements to jump to 
the labelled code.  Special cases of labels may be used to mark when a process is in a 
valid end state and when progress is being made in what could be infinite recursion. 
 

3 Interaction Constraints Language 
 
The interaction constraints language [2] defines a series of protocols using the 
extensibility elements provided by WSDL to specify the operations to which the 
constraints refer. This means that WSDL service definitions can specify, in addition to 
the operations that service supports, the protocols that are supported by the service. This 
protocol specification within the WSDL will bind the port types of participants in the 
protocol specification to the port of actual Web service. 
 
The interaction constraints themselves are defined within the protocol element which 
contains a name attribute, allowing references to named protocols (or fragments) to be 
used, enabling re-use of the constraints and aiding modularity. This feature also allows 
the designer to use recursive structures, for instance to model cases where operations 
may be called until a particular response is received. The actual protocol is defined in 
terms of the following constructs: 

• Language constructs:  
o Sequence – perform all child elements in sequence with one starting only 

when the preceding one has completed 
o Choice – perform exactly one of the child elements 
o Parallel – perform all of the child elements in parallel and complete 

when all parallel executions have completed 
o Multiple – perform the child elements an arbitrary number of times 
o Nothing – do nothing. 

• Communication constructs: 
o Send – asynchronous send 
o Receive – asynchronous receive 
o Service – the server side view of a call. There are three elements 

associated with a Service: ServiceInput, ServiceOutput and ServiceFault. 
A ServiceInput receives the input to a call. ServiceOutput and 
ServiceFault correspond to replying to the client with either the output or 
fault message defined in the WSDL description 

o Invoke – A client side view of a call. InvokeOutput is analogous to 
sending the call request and InvokeInput/InvokeFault are used to model 
receiving the result or fault from a call 
 

The language constructs can be nested to an arbitrary level and it is believed that they 
can model any possible interaction. The four communications constructs match those 
defined in WSDL. ServiceInput and InvokeOutput constructs can also have nested 
language and communication constructs as children to depict the work that may be done 
to satisfy a request. 
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4 Composition Language 
 
The composition language [1] has been designed to allow the specification of the 
structure of applications at a level of abstraction which allows the composite service 
designer to concentrate on ensuring the correct functional behaviour of the workflow 
application, even in the presence of failures. Fault tolerance requirements of 
applications have been split into the requirements at the application level itself and at 
the system level (execution environment). The composition language provides notations 
and structures for meeting modularity and application level fault-tolerance 
requirements, whereas the execution environment is responsible for meeting system 
level fault tolerance. Meeting interoperability and dynamic reconfiguration 
requirements are also the responsibility of the execution environment.  
 
There is both a graphical as well as a textual representation of the composition. A 
graphical representation of a task is given in fig. 1. It depicts a task (called task) that has 
one input set (I1) with two data parts (i1 and i2). These correspond to the messages and 
parts defined in the WSDL document describing the service. The input sets must have 
all of its input parts available before the task can start. A task terminates in one of the 
named output states (called outcomes). One of these outcomes is considered a normal 
outcome and all others are considered fault outcomes. In figure 1, O1 represents an 
output message and F1 represents a fault message. These terms are analogous to the web 
service returning an output or fault message as described in WSDL. Each outcome of a 
task has a distinct set of parts, which can be used as input objects by subsequent tasks or 
output objects by the composition. The output message in figure 1 has two named parts: 
o1 and o2 with respectively. 

 

Figure 1, a task. 
 
 
Inter-task Dependencies: As described above, the language is structured in terms of 
tasks. The control structure of the processes is described in terms of dependencies 
between those tasks. Dependencies can control when a task is executed, by using input 
dependencies and when a process completes, by using output dependencies. Input 
dependencies describe when a task can start execution, either in terms of what other 
tasks have started/completed, or in terms of where the input data needs to come from in 
order for the task to start. Output dependencies describe how the output of a process is 
“built” from the output of the constituent tasks.  A dependency that does not carry any 
data is called a temporal dependency; such dependencies are used for control flow when 
a task depends on a specific outcome of another task, but does not require the data 
generated by that task. 
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The diagram in figure 2 shows a simple composition; each task in the composition is 
described as in figure 1; solid lines represent data dependencies; dotted lines represent 
temporal dependencies. 
 
 

B

A

 

Figure 2, a simple composition. 
 

5 Modelling in Promela 
 
This section describes how the elements of a composition are modelled with Promela. 
 

5.1  Web Services 
 
The invocation of an operation of a given web service is modelled as the receipt of a 
message on its input channel followed by the sending of another message on its output 
channel.  The channels used to model web services are all unbuffered.  The message 
received on the input channel must be the same type as the request message defined in 
the WSDL document.  The message sent on the output channel will either be the 
response message, as defined in the WSDL document, or one of the fault messages, 
again defined in the WSDL document.  The decision of which output message is sent is 
made by non-deterministic choice. 
 

5.2  Interaction constraints 
 
Each protocol defined in the interaction constraints is modelled as a single Promela 
process.  The modelling of each tag within the language is described below: 
 

• Language constructs:  
o Sequence – modelled as the sequential invocation of each operation 
o Choice – modelled as a non-deterministic choice between which 

operation is invoked 
o Parallel – each operation within a parallel tag is modelled as a separate 

sub-process. 
o Multiple – modelled as a loop invoking an operation many times 

• Communication constructs: 
o Send – modelled as the sending of a message on a channel 
o Receive – modelled as the receiving of a message on a channel 



ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126 
 

D8: Composite Service Analysis Tool 7

o Service – ServiceInput is the receipt of an input message on a channel, 
ServiceOutput is the sending of an output message on a channel and 
ServiceFault is the sending of a fault message on a channel.  

o Invoke –InvokeOutput is the sending of a request on a channel, 
InvokeInput is the receipt of a response on a channel and InvokeFault is 
the receipt of a fault message on a channel.  

 

5.3  Composition 
 
A composition is represented by a collection of Promela processes; there is one process 
for every task in the composition, including the task representing the whole 
composition.  Dependencies between tasks are represented by channels, sending data 
across the channel fulfils a data dependency and sending null fulfils a temporal 
dependency.  Once all of the input dependencies have been received the process 
representing that task sends a request message on the channel to the appropriated web 
service process.  When the web service returns an output message the Promela process 
representing the task sends the messages to fulfil any output dependencies. 
 

6 Examples 
 
In this section there are three example compositions.  Each composition builds a travel 
agent service from a flight booking service and a hotel booking service.  The services 
remain the same for all three examples.  The WSDL for the flight booking service is: 
 
<wsdl:definitions xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/" 
xmlns:sc="seqconschema.xml"> 
  <wsdl:message name="ReserveFlightRequest"/> 
  <wsdl:message name="ReserveFlightResponse"/> 
  <wsdl:message name="ReserveFlightFault"/> 
  <wsdl:message name="ConfirmFlightRequest"/> 
  <wsdl:message name="ConfirmFlightResponse"/> 
  <wsdl:message name="CancelFlightRequest"/> 
  <wsdl:message name="CancelFlightResponse"/> 
 
  <wsdl:portType name="Flight"> 
    <wsdl:operation name="ReserveFlight"> 
      <wsdl:input  message="ReserveFlightRequest"/> 
      <wsdl:output message="ReserveFlightResponse"/> 
      <wsdl:fault  message="ReserveFlightFault"/> 
    </wsdl:operation> 
    <wsdl:operation name="ConfirmFlight"> 
      <wsdl:input  message="ConfirmFlightRequest"/> 
      <wsdl:output message="ConfirmFlightResponse"/> 
    </wsdl:operation> 
    <wsdl:operation name="CancelFlight"> 
      <wsdl:input  message="CancelFlightRequest"/> 
      <wsdl:output message="CancelFlightResponse"/> 
    </wsdl:operation> 
  </wsdl:portType> 
 
  <sc:sequencing-constraints> 
    <sc:participantType name="Client"> 
      <sc:portType name="User" invdef="tns:Flight"/> 
    </sc:participantType> 
    <sc:participantType name="Server"> 
    <sc:portType name="Provider" def="tns:Flight"/> 
    </sc:participantType> 
    <sc:protocolType name="Flight"> 
      <sc:sequence> 



ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126 
 

D8: Composite Service Analysis Tool 8

        <sc:serviceInput operation="ReserveFlight" portType="Flight" 
participant="Client" participantPortType="User"> 
          <sc:choice> 
            <sc:sequence> 
              <sc:serviceOutput/> 
              <sc:choice> 
                <sc:serviceInput operation="ConfirmFlight" portType="Flight" 
participant="Client" participantPortType="User"> 
                  <sc:serviceOutput/> 
                </sc:serviceInput> 
                <sc:serviceInput operation="CancelFlight" portType="Flight" 
participant="Client" participantPortType="User"> 
                  <sc:serviceOutput/> 
                </sc:serviceInput> 
              </sc:choice> 
            </sc:sequence> 
            <sc:serviceFault name="ReserveFlightFault"/> 
          </sc:choice> 
        </sc:serviceInput> 
      </sc:sequence> 
    </sc:protocolType> 
  </sc:sequencing-constraints> 
</wsdl:definitions> 

 
The WSDL definition has been enhanced with interaction constraints; they have been 
added using the WSDL Extensibility element defined by the namespace <sc>.  The 
interaction constraints state that ‘ConfirmFlight’ and ‘CancelFlight’ may only be 
called following a successful call to ‘ReserveFlight’. 
 
The WSDL for the hotel booking service is shown below; once again it contains 
interaction constraints. 
 
<wsdl:definitions xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/" 
xmlns:sc="seqconschema.xml"> 
  <wsdl:message name="ReserveHotelRequest"/> 
  <wsdl:message name="ReserveHotelResponse"/> 
  <wsdl:message name="ReserveHotelFault"/> 
  <wsdl:message name="ConfirmHotelRequest"/> 
  <wsdl:message name="ConfirmHotelResponse"/> 
  <wsdl:message name="CancelHotelRequest"/> 
  <wsdl:message name="CancelHotelResponse"/> 
 
  <wsdl:portType name="Hotel"> 
    <wsdl:operation name="ReserveHotel"> 
      <wsdl:input  message="ReserveHotelRequest"/> 
      <wsdl:output message="ReserveHotelResponse"/> 
      <wsdl:fault  message="ReserveHotelFault"/> 
    </wsdl:operation> 
    <wsdl:operation name="ConfirmHotel"> 
      <wsdl:input  message="ConfirmHotelRequest"/> 
      <wsdl:output message="ConfirmHotelResponse"/> 
    </wsdl:operation> 
    <wsdl:operation name="CancelHotel"> 
      <wsdl:input  message="CancelHotelRequest"/> 
      <wsdl:output message="CancelHotelResponse"/> 
    </wsdl:operation> 
  </wsdl:portType> 
 
  <sc:sequencing-constraints> 
    <sc:participantType name="Client"> 
      <sc:portType name="User" invdef="tns:Hotel"/> 
    </sc:participantType> 
    <sc:participantType name="Server"> 
      <sc:portType name="Provider" def="tns:Hotel"/> 
    </sc:participantType> 
    <sc:protocolType name="Hotel"> 
      <sc:sequence> 
        <sc:serviceInput operation="ReserveHotel" portType="Hotel" participant="Client" 
participantPortType="User"> 
          <sc:choice> 
            <sc:sequence> 
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              <sc:serviceOutput/> 
              <sc:choice> 
                <sc:serviceInput operation="ConfirmHotel" portType="Hotel" 
participant="Client" participantPortType="User"> 
                  <sc:serviceOutput/> 
                </sc:serviceInput> 
                <sc:serviceInput operation="CancelHotel" portType="Hotel" 
participant="Client" participantPortType="User"> 
                  <sc:serviceOutput/> 
                </sc:serviceInput> 
              </sc:choice> 
            </sc:sequence> 
            <sc:serviceFault name="ReserveHotelFault"/> 
          </sc:choice> 
        </sc:serviceInput> 
      </sc:sequence> 
    </sc:protocolType> 
  </sc:sequencing-constraints> 
</wsdl:definitions> 

 

6.1 Example 1 
 
The first example composes the services properly, containing no deadlocks and using 
the services in the correct order.  The composition can be shown graphically as in 
Figure 2.  Initially the client’s information is passed to ReserveFlight and 
ReserveHotel in parallel; there are four possibilities of what happens next firstly both 
methods succeed leading to the invocation of ConfirmFlight and ConfirmHotel, 
secondly ReserveFlight succeeds and ReserveHotel fails so we call CancelFlight, 
thirdly ReserveFlight fails and ReserveHotel succeeds so we call CancelHotel, and 
finally both fail so we simply exit.  Temporal dependencies are used to ensure that only 
the desired methods are invoked, such as for the ConfirmFlight task, which requires 
the data from ReserveFlight and for ReserveHotel to have completed successfully. 
 

 

Figure 3, correct travel booking composition. 
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The xml representation of the composition is shown below; it is quite easy to see that 
checking all of the xml by hand would be an error prone task. 
 
<processDefinition name="travelProcess" portType="TravelProcessPT" 
operation="travelProcess"> 
  <import location="Flight.wsdl"/> 
  <import location="Hotel.wsdl"/> 
  <subProcesses> 
    <taskDefinition name="ReserveFlight" portType="Flight" operation="ReserveFlight"> 
      <inputDependencies> 
        <dataDependency source="travelProcess" sourceMessageType="input"/> 
      </inputDependencies> 
    </taskDefinition> 
    <taskDefinition name="ReserveHotel" portType="Hotel" operation="ReserveHotel"> 
      <inputDependencies> 
        <dataDependency source="travelProcess" sourceMessageType="input"/> 
      </inputDependencies> 
    </taskDefinition> 
    <taskDefinition name="ConfirmFlight" portType="Flight" operation="ConfirmFlight"> 
      <inputDependencies> 
        <dataDependency source="ReserveFlight" sourceMessageType="output" 
sourceMessageName="ReserveFlightResponse"/> 
        <dependency source="ReserveHotel" sourceMessageType="output" 
sourceMessageName="ReserveHotelResponse"/> 
      </inputDependencies> 
    </taskDefinition> 
    <taskDefinition name="ConfirmHotel" portType="Hotel" operation="ConfirmHotel"> 
      <inputDependencies> 
        <dataDependency source="ReserveHotel" sourceMessageType="output" 
sourceMessageName="ReserveHotelResponse"/> 
        <dependency source="ReserveFlight" sourceMessageType="output" 
sourceMessageName="ReserveFlightResponse"/> 
      </inputDependencies> 
    </taskDefinition> 
    <taskDefinition name="CancelFlight" portType="Flight" operation="ConfirmFlight"> 
      <inputDependencies> 
        <dataDependency source="ReserveFlight" sourceMessageType="output" 
sourceMessageName="ReserveFlightResponse"/> 
        <dependency source="ReserveHotel" sourceMessageType="fault" 
sourceMessageName="ReserveHotelFault"/> 
      </inputDependencies> 
    </taskDefinition> 
    <taskDefinition name="CancelHotel" portType="Hotel" operation="ConfirmHotel"> 
      <inputDependencies> 
        <dataDependency source="ReserveHotel" sourceMessageType="output" 
sourceMessageName="ReserveHotelResponse"/> 
        <dependency source="ReserveFlight" sourceMessageType="fault" 
sourceMessageName="ReserveFlightFault"/> 
      </inputDependencies> 
    </taskDefinition> 
  </subProcesses> 
  <outputDependencies> 
    <dataDependency source="ConfirmFlight" sourceMessageType="output" 
sourceMessageName="ConfirmFlightResponse" sinkMessageType="output"/> 
    <dataDependency source="ConfirmHotel"  sourceMessageType="output" 
sourceMessageName="ConfirmHotelResponse"  sinkMessageType="output"/> 
    <dataDependency source="ReserveFlight"  sourceMessageType="fault" 
sourceMessageName="ReserveFlightFault"    sinkMessageType="fault"/> 
    <dataDependency source="ReserveHotel"   sourceMessageType="fault" 
sourceMessageName="ReserveHotelFault"     sinkMessageType="fault"/> 
  </outputDependencies> 
</processDefinition> 

 
Running the analysis tool on the xml doesn’t find any errors; the program output is 
shown below: 
 
Precompiling... 
Compiling... 
Verifying... 
No errors found 
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6.2 Example 2 
 
In this example the service composer has missed one of the output data dependencies; 
the missing dependency should link the fault output from ReserveHotel to the fault 
output for the overall process (the outputs are shown in grey in figure 3). 

Reserve
Flight

Reserve
Hotel

Confirm
Flight

Cancel
Hotel

Confirm
Hotel

Cancel
Flight

 

Figure 4, missing link. 
 
The xml representation for this composition is shown below.  It is hard to see the 
difference between this document and the one from the first example.  One 
<dataDependency> tag is missing from <outputDependencies>. 
 
<processDefinition name="travelProcess" portType="TravelProcessPT" 
operation="travelProcess"> 
  <import location="Flight.wsdl"/> 
  <import location="Hotel.wsdl"/> 
  <subProcesses> 
    <taskDefinition name="ReserveFlight" portType="Flight" operation="ReserveFlight"> 
      <inputDependencies> 
        <dataDependency source="travelProcess" sourceMessageType="input"/> 
      </inputDependencies> 
    </taskDefinition> 
    <taskDefinition name="ReserveHotel" portType="Hotel" operation="ReserveHotel"> 
      <inputDependencies> 
        <dataDependency source="travelProcess" sourceMessageType="input"/> 
      </inputDependencies> 
    </taskDefinition> 
    <taskDefinition name="ConfirmFlight" portType="Flight" operation="ConfirmFlight"> 
      <inputDependencies> 
        <dataDependency source="ReserveFlight" sourceMessageType="output" 
sourceMessageName="ReserveFlightResponse"/> 
        <dependency source="ReserveHotel" sourceMessageType="output" 
sourceMessageName="ReserveHotelResponse"/> 
      </inputDependencies> 
    </taskDefinition> 
    <taskDefinition name="ConfirmHotel" portType="Hotel" operation="ConfirmHotel"> 
      <inputDependencies> 
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        <dataDependency source="ReserveHotel" sourceMessageType="output" 
sourceMessageName="ReserveHotelResponse"/> 
        <dependency source="ReserveFlight" sourceMessageType="output" 
sourceMessageName="ReserveFlightResponse"/> 
      </inputDependencies> 
    </taskDefinition> 
    <taskDefinition name="CancelFlight" portType="Flight" operation="CancelFlight"> 
      <inputDependencies> 
        <dataDependency source="ReserveFlight" sourceMessageType="output" 
sourceMessageName="ReserveFlightResponse"/> 
        <dependency source="ReserveHotel" sourceMessageType="fault" 
sourceMessageName="ReserveHotelFault"/> 
      </inputDependencies> 
    </taskDefinition> 
    <taskDefinition name="CancelHotel" portType="Hotel" operation="CancelHotel"> 
      <inputDependencies> 
        <dataDependency source="ReserveHotel" sourceMessageType="output" 
sourceMessageName="ReserveHotelResponse"/> 
        <dependency source="ReserveFlight" sourceMessageType="fault" 
sourceMessageName="ReserveFlightFault"/> 
      </inputDependencies> 
    </taskDefinition> 
  </subProcesses> 
  <outputDependencies> 
    <dataDependency source="ConfirmFlight" sourceMessageType="output" 
sourceMessageName="ConfirmFlightResponse" sinkMessageType="output"/> 
    <dataDependency source="ConfirmHotel"  sourceMessageType="output" 
sourceMessageName="ConfirmHotelResponse"  sinkMessageType="output"/> 
    <dataDependency source="ReserveFlight"  sourceMessageType="fault" 
sourceMessageName="ReserveFlightFault"    sinkMessageType="fault"/> 
  </outputDependencies> 
</processDefinition> 

 
Running the analysis tool on this xml finds the error and identifies the dependencies that 
have been fulfilled in order to generate the error.  The program output below shows the 
information needed to identify which dependencies have been successfully fulfilled, this 
information can be mapped onto the original xml so that the composer can find where 
the deadlock is. 
 
Precompiling... 
Compiling... 
Verifying... 
Trailing... 
Composition Node 7 : input Data Dependency in task "ReserveFlight" from "travelProcess" 
for message part "" fullfilled. 
Composition Node 10 : input Data Dependency in task "ReserveHotel" from "travelProcess" 
for message part "" fullfilled. 
Sent "ReserveHotelRequest" to operation "ReserveHotel" of portType "Hotel" 
Sent "ReserveFlightRequest" to operation "ReserveFlight" of portType "Flight" 
Received "ReserveHotelFault" from operation "ReserveHotel" of portType "Hotel" 
Composition Node 22 : fault Dependency in task "CancelFlight" from "ReserveHotel" for 
message part "ReserveHotelFault" fullfilled. 
Received "ReserveFlightResponse" from operation "ReserveFlight" of portType "Flight" 
Composition Node 13 : output Data Dependency in task "ConfirmFlight" from 
"ReserveFlight" for message part "ReserveFlightResponse" fullfilled. 
Composition Node 21 : output Data Dependency in task "CancelFlight" from "ReserveFlight" 
for message part "ReserveFlightResponse" fullfilled. 
Sent "CancelFlightRequest" to operation "CancelFlight" of portType "Flight" 
Composition Node 18 : output Dependency in task "ConfirmHotel" from "ReserveFlight" for 
message part "ReserveFlightResponse" fullfilled. 
Received "CancelFlightResponse" from operation "CancelFlight" of portType "Flight" 

6.3 Example 3 
 
In this example the service composer has misconfigured one of the output 
dependencies; this error means that the output of this composition relies on both the 
response output and the fault output from ReserveHotel; this is because ConfirmFlight 
has a temporal dependency on reserve hotel succeeding and the final output depends on 
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ConfirmFlight and ReserveHotel.  As web services only ever produce one output this 
process will deadlock whenever ReserveFlight succeeds.  The misconfigured link 
connects the outputs in grey. 

Reserve
Flight

Reserve
Hotel

Confirm
Flight

Cancel
Hotel

Confirm
Hotel

Cancel
Flight

 

Figure 5, two crossed links. 
 
Once again the difference between the xml below and the xml from the first example is 
hard to spot; two of the attributes have been swapped. 
 
<processDefinition name="travelProcess" portType="TravelProcessPT" 
operation="travelProcess"> 
  <import location="Flight.wsdl"/> 
  <import location="Hotel.wsdl"/> 
  <subProcesses> 
    <taskDefinition name="ReserveFlight" portType="Flight" operation="ReserveFlight"> 
      <inputDependencies> 
        <dataDependency source="travelProcess" sourceMessageType="input"/> 
      </inputDependencies> 
    </taskDefinition> 
    <taskDefinition name="ReserveHotel" portType="Hotel" operation="ReserveHotel"> 
      <inputDependencies> 
        <dataDependency source="travelProcess" sourceMessageType="input"/> 
      </inputDependencies> 
    </taskDefinition> 
    <taskDefinition name="ConfirmFlight" portType="Flight" operation="ConfirmFlight"> 
      <inputDependencies> 
        <dataDependency source="ReserveFlight" sourceMessageType="output" 
sourceMessageName="ReserveFlightResponse"/> 
        <dependency source="ReserveHotel" sourceMessageType="output" 
sourceMessageName="ReserveHotelResponse"/> 
      </inputDependencies> 
    </taskDefinition> 
    <taskDefinition name="ConfirmHotel" portType="Hotel" operation="ConfirmHotel"> 
      <inputDependencies> 
        <dataDependency source="ReserveHotel" sourceMessageType="output" 
sourceMessageName="ReserveHotelResponse"/> 
        <dependency source="ReserveFlight" sourceMessageType="output" 
sourceMessageName="ReserveFlightResponse"/> 
      </inputDependencies> 
    </taskDefinition> 
    <taskDefinition name="CancelFlight" portType="Flight" operation="CancelFlight"> 
      <inputDependencies> 
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        <dataDependency source="ReserveFlight" sourceMessageType="output" 
sourceMessageName="ReserveFlightResponse"/> 
        <dependency source="ReserveHotel" sourceMessageType="fault" 
sourceMessageName="ReserveHotelFault"/> 
      </inputDependencies> 
    </taskDefinition> 
    <taskDefinition name="CancelHotel" portType="Hotel" operation="CancelHotel"> 
      <inputDependencies> 
        <dataDependency source="ReserveHotel" sourceMessageType="output" 
sourceMessageName="ReserveHotelResponse"/> 
        <dependency source="ReserveFlight" sourceMessageType="fault" 
sourceMessageName="ReserveFlightFault"/> 
      </inputDependencies> 
    </taskDefinition> 
  </subProcesses> 
  <outputDependencies> 
    <dataDependency source="ConfirmFlight" sourceMessageType="output" 
sourceMessageName="ConfirmFlightResponse" sinkMessageType="output"/> 
    <dataDependency source="ConfirmHotel"  sourceMessageType="output" 
sourceMessageName="ConfirmHotelResponse"  sinkMessageType="fault"/> 
    <dataDependency source="ReserveFlight" sourceMessageType="fault"  
sourceMessageName="ReserveFlightFault"    sinkMessageType="fault"/> 
    <dataDependency source="ReserveHotel"  sourceMessageType="fault"  
sourceMessageName="ReserveHotelFault"     sinkMessageType="output"/> 
  </outputDependencies> 
</processDefinition> 

 
Running the analysis tool on this xml finds the error and identifies the dependencies that 
have been fulfilled in order to generate the error.  The program output below shows the 
trail to highlight the position of the deadlock: 
 
Precompiling... 
Compiling... 
Verifying... 
Trailing... 
Composition Node 7 : input Data Dependency in task "ReserveFlight" from "travelProcess" 
for message part "" fullfilled. 
Composition Node 10 : input Data Dependency in task "ReserveHotel" from "travelProcess" 
for message part "" fullfilled. 
Sent "ReserveHotelRequest" to operation "ReserveHotel" of portType "Hotel" 
Sent "ReserveFlightRequest" to operation "ReserveFlight" of portType "Flight" 
Received "ReserveHotelFault" from operation "ReserveHotel" of portType "Hotel" 
Composition Node 22 : fault Dependency in task "CancelFlight" from "ReserveHotel" for 
message part "ReserveHotelFault" fullfilled. 
Composition Node 31 : fault Data Dependency in task "travelProcess" from "ReserveHotel" 
for message part "ReserveHotelFault" fullfilled. 
Received "ReserveFlightResponse" from operation "ReserveFlight" of portType "Flight" 
Composition Node 13 : output Data Dependency in task "ConfirmFlight" from 
"ReserveFlight" for message part "ReserveFlightResponse" fullfilled. 
Composition Node 21 : output Data Dependency in task "CancelFlight" from "ReserveFlight" 
for message part "ReserveFlightResponse" fullfilled. 
Sent "CancelFlightRequest" to operation "CancelFlight" of portType "Flight" 
Composition Node 18 : output Dependency in task "ConfirmHotel" from "ReserveFlight" for 
message part "ReserveFlightResponse" fullfilled. 
Received "CancelFlightResponse" from operation "CancelFlight" of portType "Flight" 

 

7 Further Work 
 
In order to maximise the benefits of this tool for the service composer it needs to be 
integrated in a graphical tool for developing compositions; the output of the analysis 
could then be mapped onto the graphical representation to illustrate any flaws; this 
would greatly simplify the task of correcting the errors. 
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Abstract

Availability of a wide variety of Web services over the
Internet offers opportunities of providing new value added
services built by composing them out of existing ones. Ser-
vice composition poses a number of challenges. A com-
posite service can be very complex in structure, containing
many temporal and data-flow dependencies between their
constituent services. Furthermore, each individual service
is likely to have its own sequencing constraints over its op-
erations. It is highly desirable therefore to be able to val-
idate that a given composite service is well formed: prov-
ing that it will not deadlock or livelock and that it respects
the sequencing constraints of the constituent services. With
this aim in mind, the paper proposes simple extensions to
web service definition language (WSDL) enabling the or-
der in which the exposed operations should be invoked to
be specified. In addition, the paper proposes a composition
language for defining the structure of a composite service.
Both languages have an XML notation and a formal basis
in theπ-calculus (a calculus for concurrent systems). The
paper presents the main features of these languages, and
shows how it is possible to validate a composite service by
applying theπ-calculus reaction rules.

1. Introduction

Creating new services by combining a number of exist-
ing ones is becoming an attractive way of developing value
added web services. This pattern is not new but it does pose
some new challenges which have yet to be addressed by
current technologies and tools for web service composition.
Ideally, it is desirable to automatically compose a service
capable of achieving a goal specified by a client request.
However, in the near future this is unlikely to be possible
due to the lack of semantic information provided by current
web services. The first step in this direction is to provide

more semantic information about each web service in order
to be able to reason about a composition which has been
created manually.

There are two perspectives that can be taken when con-
sidering composite services: that of the provider of the web
services, and that of the service composer who wishes to
create a value added service by utilising existing services.
Using current technology, the web service provider will de-
ploy a service and expose the interface to the service using
Web Service Definition Language (WSDL). The WSDL de-
scription of a service contains a specification of the opera-
tions which a service exposes and binding information de-
tailing how to invoke the operations in terms of protocols
and addressing. Although this level of detail is sufficient
for constructing simple web services applications it is in-
sufficient when it comes to creating complex services and
reasoning about their composition [14].

To a service composer, it is desirable to be able to verify
that the composition is well formed: for example that it does
not contain any deadlocks or livelocks which would cause
the composition to not terminate under certain conditions;
and that the composition uses each web service “correctly”.
It is possible to verify the former using formal notations and
model checkers but for the latter it is necessary to describe
what is meant by “correctly”. One aspect of using a web
service correctly is invoking the operations in the order in
which the provider intended. However, the WSDL descrip-
tion of a web service does not specify any ordering infor-
mation for the operations which are exposed by the service.
To allow a service composer to verify this aspect of cor-
rectness of the composition, the ordering information must
be provided by the web service in addition to the WSDL
description.

1.1. Motivating Example

It is useful at this point to present an example to fur-
ther explain the motivations and clarify the role played
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Figure 1. Sequence Diagrams for the shop
and bank web services

by each party. The example contains two web services
provided by third parties, one by a shop and one by a
bank. Both are simplified for brevity and ease of un-
derstanding. The shop web service exposes two opera-
tions,order anddispatch both of which are RPC (Re-
mote Procedure Call) style services accepting requests and
generating responses. To use the service correctly, the
dispatch operation must be invoked after theorder
operation. The bank web service also exposes two opera-
tions,payment_authorise andpayment_capture .
These operations must be invoked in the above or-
der, but in addition,payment_authorise must re-
turn a response message rather than an exception be-
fore payment_capture can be invoked. Should
payment_authorise return an fault, it is invalid to in-
voke thepayment_capture operation. UML Sequence
Diagrams showing the legal sequences of operations for
each service are shown in Fig. 1.

A service composer wishes to utilise the shop and bank
web services to provide a single point of access to cus-
tomers who wish to purchase items from the shop. The
composer wishes to ensure that despite the different re-
sponses from each of the services, the composition al-
ways uses the services according to the specifications de-
fined above and does not contain any deadlocks or livelocks
which would prevent termination.

The composition of these services could be
as follows. Invoke the order operation, fol-
lowed by the payment_authorise opera-
tion. If payment_authorise succeeds then
payment_capture anddispatch may be invoked. If
payment_authorise fails then the composition also
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Figure 2. UML Activity diagram for a compos-
ite order service

fails. This composition is illustrated by the UML Activity
diagram in Fig. 2.

In this simplified example it is possible to see
that there are two “execution traces” which are possi-
ble through the composition dependant on whether the
payment_authorise operation returns a success re-
sponse or an exception. Clearly neither of these contain
any livelocks or deadlocks. However, in the general case
this may not be easy to infer as the size and complexity of
a composition increases. It is also trivial to see that this
composition utilises the shop and the bank web services
correctly asdispatch is always invoked afterorder and
payment_capture is correctly dependant on the output of
payment_authorise . Again however, as the number
of tasks in the composition increases and as complex inter
task dependencies are introduced this will become harder to
state by studying the composition. It is highly desirable to
be able to automatically verify that an arbitrary composition
correctly uses all of its component services.

In this paper we present three aspects of service spec-
ification and verification: Firstly, we describe a language
for the specification of composite web services as business
processes; the language permits orchestration of the process
using workflow management systems in either a centralised
or distributed, peer-to-peer fashion; Secondly we present a
simple language for capturing the order in which the op-
erations of a web service should be invoked to achieve a
goal; Thirdly, the formal basis that both languages have in
theπ-calculus enables us to prove, using reduction seman-
tics of theπ-calculus, that a given composite service is free
from deadlocks, livelocks and it invokes the operations of



the third party web services in the correct order.
The remainder of this paper is structured as follows: Section
2 gives an overview of the current state of the art; Section
3 describes a language for defining composite services; the
sequencing constraints which can be exposed by a web ser-
vice are described in Section 4 and Section 5 shows how
the two languages complement each other and uses the pre-
vious example to formally show that the composition is well
formed. Finally, further work is presented and conclusions
are drawn in Sections 6 and 7.

2. Related Work

Web Services technology is evolving rapidly. In the fol-
lowing section notable, recent or ongoing efforts will be dis-
cussed with emphasis on those aspects that are relevant to
service composition and validation.

The Business Process Execution Language for Web Ser-
vices (BPEL4WS) [1] provides a standard for specify-
ing both business process behaviour (service composition)
and business process interactions (sequencing constraints).
BPEL4WS attempts to describe business process interac-
tions using the mutually visible message exchange of each
of the parties involved in the protocol, such descriptions are
calledbusiness protocols. Another facet of BPEL4WS is
the specification ofexecutable processeswhich describe the
structure of a composition in sufficient detail to be executed
by an enactment engine. Both of the aspects of BPEL4WS
are encoded in XML using a rich set of structured program-
ming style constructs. However, BPEL4WS is lacking a for-
mal, well understood basis and due to this and the rich set
of constructs, specifications written in BPEL4WS are not
readily susceptable to automatic verification. When con-
sidering only a subset of BPEL4WS, it has been shown in
[13] that verification of safety and liveness conditions can
be achieved.

The purpose of Web Service Conversation Language
(WSCL) [4] is to provide a standard for specifying business
level conversations. WSCL provides an XML schema for
specifying business level conversations that take place at a
single Web service. The WSCL notion of a conversation is a
series of messages exchanged between a service-consumer
and a service-provider. The WSCL specification models a
conversation as a finite state machine where state changes
are triggered by interactions. An interaction is the exchange
of one or two documents between a service-consumer and
a service-provider. WSCL is simple, and analysable, but
does have some limitations, such as only being capable of
modeling two party conversations and does not define how
to specify an executable process. There are no signs that
WSCL has been widely adopted or that an updated version
will be published.

The Web Services Choreography Working Group [5] is

an initiative by the World Wide Web Coalition (W3C) and
was started in January 2003. The Working Group is char-
tered to create the definition of a choreography, language(s)
for describing a choreography, as well as the rules for com-
position of, and interaction among, such choreographed
Web services. At this time the Working Groups First Work-
ing Draft Specification is still in preparation.

In [11] a technique is presented to allow automatic com-
position of web services to achieve a goal. This approach
is based on Mealy Finite State Machines (MFSMs), a finite
state machine with input and output queues. Each service
which can form part of the composition must be described
by a MFSM and the goal of the desired composition must
also be described by a MFSM. The former part can be con-
sidered similar to exposing sequencing constraints but with
a different formal background. The algorithm provided for
automatically creating the composition is an effective one
but relies on the specifying the desired composition as a
MFSM, a requirement which may not always be desirable.
In many respects, this approach is similar to the DAML-
S Coalition [9] which is defining an ontology and related
language for describing web services with the aim of being
able to compose them automatically [23, 19]. This technol-
ogy will undoubtedly play an important role in the future
but at present is in its infancy with a lack of tools support
and rapidly changing specifications.

The results based on Mealy machines presented in [12],
suggest that there is a lack of understanding of the rela-
tionship between local properties of web services, and the
global properties of a composition created from them. It is
shown that unexpected behaviour can occur when messages
are queued and distributed decisions taken. It is possible
for a service to use an interceptor to ensure that the opera-
tions it exposes are invoked in the correct order [25]. This
work relies on a language based on CSP to describe the le-
gal sequences of operations but has the disadvantage that it
is only able to model two party interactions rather than the
multi-party interactions presented here.

Our work makes complementary contributions to those
outlined above. As we discuss in the next section, our
language notations represent an advance over the current
industrial practice as represented by BPEL4WS. We draw
upon our earlier work on business processes specifica-
tion languages and enactment (orchestration) environments
[22, 26]. We allow the service composer to make use of a
graphical notation for defining the composition as a busi-
ness process which we believe to be more intuitive and ex-
pressive than an FSM notation. A clear separation is drawn
between the specification of sequencing constraints for in-
dividual web services and that of the composition of those
services. We also allow the verification, albeit not automatic
composition, that a composition respects those constraints
placed on the constituent services. Although simple, our



languages are expressive enough to be able to model com-
plex interaction patterns within a composition and capture
elaborate sequencing constraints [22, 16]. Message queue-
ing is not considered in this paper but we believe that our
π-calculus based approach to service composition can aid
understanding of the global properties of a service, when
those properties are concerned with the order of invocation
of operations.

3. Specifying Composition

3.1. Language Features

In addition to being able to verify that a composition
is well formed and uses the constituent services correctly,
it is also desirable to be able to enact a composite ser-
vice in a distributed, peer-to-peer manner [10]. Centralised
coordination is sufficient for some classes of applications.
There are others which benefit from peer-to-peer style en-
actment. Value added services provided by Virtual Organi-
sations (VOs) are gaining in popularity and fall into this cat-
egory. This is due to trust and organisational issues which
may prevent the service being enacted from one location.

Industry led efforts aimed at specifying composition lan-
guages for web services detailed earlier, take a centralised
view of composition and subsequent execution. For exam-
ple, the use of shared variables in BPEL4WS makes it very
difficult to coordinate the execution in a distributed manner.
Also, many of these languages specify complicated con-
trol flow mechanisms, making it difficult to analyse such
compositions. The composition language that we propose
has been developed with both of these drawbacks in mind:
it contains elements to allow distributed enactment of the
composition and the simple data flow sequencing model is
based on theπ-calculus to allow analysis of compositions.

Fault tolerance is necessary to maintain application spe-
cific consistency in the face of failures such as proces-
sor crashes, network related failures and application ex-
ceptions. The fault tolerance requirements of composite
services have been split into the requirements at the ap-
plication level and at the system level (execution environ-
ment). The composition language provides notations and
structures for meeting application level fault-tolerance re-
quirements through exceptions, alternative tasks and com-
pensating tasks, whereas the execution environment is re-
sponsible for meeting system level fault tolerance. The exe-
cution environment is described in [27] and is based on the
OPENflow workflow engine [22].

The composition language has two core concepts: a task
and a process. A task in a composition is the basic unit of
work and corresponds to an invocation of a web service op-
eration. When tasks are composed together they are said to
form a process. However, processes can be composed re-
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Figure 3. A task showing the input and output
parts and messages

cursively, that is a process can contain other processes as
well as tasks. A graphical representation of a task is given
in Fig. 3. It depicts a task (called prepare) that has one in-
put message (I) with two data parts (i1 and i2), correspond-
ing to themessages and parts defined in the WSDL
description of the operation. This task represents one invo-
cation of a web service called prepare. The input message
must have all of its input parts available before the task can
start (invoking the web service). A task terminates in one
of the named output states (called outcomes) when the web
service returns a response. One of these outcomes is con-
sidered normal and all others are considered fault outcomes
following the convention of WSDL. In Fig. 3, O represents
an output message and F represents a fault message. Each
outcome of a task has a distinct set of parts, which can be
used as input by subsequent tasks or output by a composing
processes. If the format of the inputs and outputs do not
match precisely, it is possible to perform simple transfor-
mations on the data to overcome this. The output message
O in Fig. 3 has two named parts o1 and o2. The fault mes-
sage F has one fault part f1. It is possible for an input or
output message to be “empty”, i.e. contain no parts, which
models methods which take no parameters and void return
types respectively.

The control structure of a process is described in terms
of inter-task dependencies linking tasks together to form a
process. Two types of inter-task dependency can be used
to control the execution of a composition: temporal depen-
dencies and data dependencies. Temporal dependencies are
used to control the execution of a task based on other tasks
or processes being in particular states. Such a state could
be “started” or “completed” with particular outcome. Tem-
poral dependencies are represented by dotted arrows in the
graphical representation of the composition. Data depen-
dencies describe where a task acquires its input from, such
as the output of another task or the input into the composing
process. Data dependencies are represented by solid arrows
in the graphical representation. A task can have an arbitrary
mix of data and temporal dependencies describing when it
can be executed (grouped as “input dependencies”). A pro-
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Figure 4. Composite Order service utilising
third party bank and shop services

cess can have a similar mix of dependencies controlling its
start but also controlling its completion. Such dependencies
which control completion are called “output dependencies”
and specify how the output of the process is constructed
from the data used by its constituent tasks. It is possible to
provide an element of fault tolerance through redundancy
by using multiple alternate data dependencies. Combina-
tions of such alternate data and temporal dependencies can
be used to describe complex process structures as discussed
in [22, 26].

The graphical representation of the example presented
in Section 1, comprising of four tasks linked by data de-
pendencies is shown in Fig. 4. The order task and the
payment_authorise task in the composition both have in-
put dependencies on the input to the composite service (la-
belled id1 and id2). This means that when the input mes-
sage, i is received from the client, these input dependen-
cies will be available, and if all of a tasks input depen-
dencies are fulfilled it will begin execution. In this case,
the order task can begin execution as its only input depen-
dency is fulfilled. When the order task completes, the re-
sults will be propagated to payment_authorise and dispatch
along the dependencies shown. This action completes the
input dependencies for payment_authorise so it is able to
execute. Such behaviour continues until the output depen-
dencies of the outer process (POrder) are fulfilled. In this
scenario, the normal output message, o will be complete af-
ter the dispatch task has completed (fulfilling the output de-
pendency between dispatch and POrder), or the fault mes-
sage, f will be complete after the payment_authorise task
has terminated with a fault message (fulfilling the output de-
pendency between payment_authorise and POrder). A seg-
ment of the XML notation of the POrder composite service
is shown below, consisting of the tasks payment_authorise
and payment_capture. It is possible to see the task defini-
tion and dependency structure. The payment_authorise task
(P_A_Task) has an two input dependencies, one from the

composing process POrder and one from the output of the
orderTask (not shown). The P_C_Task representing pay-
ment_capture has just one dependency, on the output of the
P_A_Task. When the input dependencies for each task are
fulfilled they will execute, invoking the web service oper-
ation detailed in the operation attribute of the taskDefini-
tion element. When each service is invoked, the parameters
are renamed according to the sinkPartName attributes. For
brevity namespaces and address data for the services has
been omitted.

<processDefinition name="POrder" ... >


  <subProcesses>


    ...


    <taskDefinition name="P_A_Task"


     operation="paymentAuthorise" ... >


      <inputDependencies>


        <dataDependency sourceProcess="POrder"


         sourcePartName="accountNum"


  sinkPartName=”accountToDebit”... />


        <dataDependency sourceProcess="orderTask"


         sourcePartName="amount"


  sinkPartName=”debitAmountInSterling” ... />


      </inputDependencies>


    </taskDefinition>


    <taskDefinition name="P_C_Task"


     operation="paymentCapture" ... >


      <inputDependencies>


<dataDependency sourceProcess="P_A_Task"


        sourcePartName="authNum"


 sourceMessageType=”output”


 sinkPartName=”authorisationCode” ... />


      </inputDependencies>


    </taskDefinition>


    ...


  </subProcesses>


</processDefinition>


It is possible and likely in some application domains
that composite services could be very large, involving many
tasks and complex inter-task dependencies. To make such
compositions easier to create, maintain and understand it is
desirable to be able to modularise them and reuse the def-
initions where possible. To achieve this, it is possible to
reference other, external process definitions from within a
process. Such referenced process definitions may include
frequently used modules of compositions, which are defined
separately and referenced by a number of different composi-
tions. Examples include a fragment to log into a frequently
used web service or interact with a transaction manager.

Resource availability may be at a premium on the node
which is enacting the composite service. In order to allow
efficient resource management there are two stages at which
the composition designer can choose to instantiate the tasks
and sub processes within it: Early or late. When Early (tra-
ditional) instantiation is used, all of the tasks, sub processes
and externally referenced processes are loaded into the exe-
cution environment and initialised when the composite ser-
vice is instantiated following a client request. This leads to
a static system which is easier to reason about but more dif-
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Figure 5. Using a late instantiating task to per-
form recursion

ficult to modify. Late instantiation results in the tasks, sub
processes and externally referenced processes not being in-
stantiated until they are able to run, i.e. when all of their
input dependencies are satisfied. Late instantiation implies
that only those parts of large process definitions that are
needed will be instantiated, giving more efficient resource
usage.

Many structures within a composite service will require
a form of recursion to perform a task a number of times,
often not known until runtime. Using late instantiated pro-
cesses, depicted as a process with a dotted border, allows the
designer to achieve this. It is possible for a late instantiated
service to refer to itself and instantiate another instance of
itself under certain conditions giving the desired recursive
behaviour [22]. For instance, tA in Fig. 5 refers to itself,
causing repeated execution of tB until tB completes with
the lower outcome.

3.2. Orchestration

Orchestration of composite services defined in the com-
position language can be carried out using a workflow man-
agement system. Our current execution environment is
DECS [27], a workflow enactment engine, built on top of
the J2EE architecture [24] which allows flexible coordina-
tion of composite services. That is, the orchestration can
either be centralised or distributed where engines communi-
cate with each other in a peer-to-peer manner. When decen-
tralised orchestration is employed, each engine is responsi-
ble for part of the execution of the composite service. Each
engine will invoke the constituent services for its part of
the composition and send notification messages to other en-
gines when certain events occur. Such notifications only
contain the minimal amount of data necessary for the other
engines to continue enacting their part of the composition
(see Fig. 6.). This gives rise to increased security and or-
ganisational autonomy as each engine is only aware of the
data necessary for it to continue execution. The composi-
tion language can be mapped onto other execution environ-
ments. We currently provide such a mapping to JOpera, a
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Figure 6. Distributed orchestration of a com-
posite service

centralised workflow management system [21].

3.3. Semantics

To allow reasoning about a composition with respect to
deadlocks, livelocks and respecting sequencing constraints
of the constituent services, the composition language has
a formal basis in theπ-calculus [18]. It is possible to
translate from the XML format of the language to theπ-
calculus format. In theπ-calculus format, tasks are rep-
resented asπ-calculus processes, and dependencies linking
the tasks, represented byπ-calculus channels. (An overview
of π-calculus is given in the Appendix.) Channels repre-
sent data dependencies, as temporal dependencies are repre-
sented implicitly using the operators ofπ-calculus directly.
As each task in the composition language is analogous to an
invocation of an operation of a web service, this invocation
is also modelled as the sending of a message along a channel
to the web service. The receipt of a response or exception
from the web service is modelled as the receipt of a mes-
sage along a channel from the web service. The composite
service as a whole is modelled as a parallel composition
of all of these processes. For readability, a notational con-
vention has been adopted whereby the channels are named
as the processes which they connect, for example, papc
is a channel between thepayment_authorise and the
payment_capture tasks. The channels which represent
a connection to a web service are written as an abbreviation
of the operation name such as o for order, appended with an
abbreviation of the type of message it is (input - i, output -
o, exception - e). The names that are sent down each chan-
nel represent either wsdl:messages or wsdl:parts and where
necessary, an internal action (τ ) can perform transformation
on these messages to extract/combine them. The full range
of pi-calculus constructs: sequence (.), parallel composition
( | ), choice (+) and replication(!) are used to define the flow



control within the composition. In [18] it is shown that these
operators are sufficient to model the communication in any
system, or in this case, composition.

The pi-calculus format of the composition from Fig. 4
is shown below. It consists of 5 pi-calculus processes com-
posed in parallel to form thesystem(COMP): PO (the outer
composite service), Order (O), payment_authorise (PA),
payment_capture (PC) and dispatch (D). The names which
are sent down the channels represent the input/output de-
pendencies between the tasks, for example order# (on),
account# (an), amount (am), delivery_day (dd), excep-
tion_code (ec), invoice# (in), reference# (rn) and authori-
sation# (ac).

As PO represents a process in the composition language,
its structure is different from that of aπ-calculus process
which represents a task in the composition. PO begins by
sending two messages along different channels in parallel:
on (order#) is sent along thēpoo channel from PO to or-
der (o); an account# (an) is sent along thēpopa channel
from PO to payment_authorise (pa). The PO process then
waits to receive messages which will form its output. There
is a choice of messages which can form the output, either
receiving a delivery_day (dd) from the dispatch (D) pro-
cess along channel dpo, or receiving an exception_code (ec)
along the papo channel which connects payment_authorise
(pa) to PO. The final 0 in the process signals that theπ-
calculus process is complete and in this case, also that the
composite service is complete.

PO = ( ¯poo<on> | ¯popa<an>).(dpo(dd)+papo(ec)).0

π-calculus processes which represent tasks in the com-
position language all follow the same structure: they wait to
receive their input, send a message to the web service that
they are invoking, receive the response from the web service
and finally send messages to other ”downstream” processes
which have dependencies on them. For instance, the Or-
der process (O) waits to receive an order# (on) along the
channel from PO named poo. The process then performs an
internal action to signify that the input data is transformed
into a request (req) for the web service. This request is sent
along the input channel for the web service (oi) and then
the response gathered from the output channel of the web
service (receiving rsp along oo). Again, an internal action
denotes the deserialisation of the response and parts of the
response are propagated to downstream tasks. In this case,
the propagation involves sending an amount (am) to pay-
ment_authorise along thēopa channel and, in parallel, an
invoice number to dispatch along thēod channel. The ter-
minating 0 shows that theπ-calculus process is complete,
but in this case does not signify that the composite service
is complete.

O = poo(on).τ.ōi<req>.oo(rsp).τ.( ¯opa<am> | ōd<in>).0

PA = (popa(an) | opa(am)).τ. ¯pai<req>.(pao(rsp).τ. ¯papc<rn>

+pae(flt).τ. ¯papo<ec>).0

PC = papc(rn).τ.p̄ci<req>.pco(rsp).τ. ¯pcd<ac>.0

D = (od(in) | pcd(ac)).τ.d̄i<req>.do(rsp).τ. ¯dpo<dd>.0

COMP = (PO|O|PA|PC|D)

Section 5 discusses how to verify that such a composition
is free of deadlocks and cyclic dependencies whilst utilising
the constituent web services in the correct manner.

4. Sequencing Constraints

4.1. Language Features

In order to be able to verify that a composition described
by the composition language uses the third party services in
the correct way, it is necessary for these services to expose
additional semantic information describing what “the cor-
rect way” is. The language described in this section intends
to define the order in which the operations of a web service
should be invoked, or thesequencing constraintswhich are
placed on a service. Such constraints should be: flexible
- to be able to model any possible sequence of operations;
complete - so that all legal sequences are represented; con-
cise - to avoid ambiguities which might be introduced by a
complex language.

It is possible to think of the sequencing constraints
placed on a web service as the “protocol” that the web ser-
vice supports. Descriptions of protocols are not new and
there are many common descriptions that are used [20],
however these tend to be intended for human readability and
not machine interpretation.

The sequencing constraints are defined by the web ser-
vice provider and exposed in the WSDL definition of the
service by utilising the extensibility elements in WSDL.
There are only five language constructs necessary to de-
scribe any possible sequence of messages:

• Sequence: perform all child elements in sequence with
one starting only when the preceding one has com-
pleted

• Choice: perform exactly one of the child elements



• Parallel: perform all of the child elements in parallel
and complete when all parallel executions have com-
pleted

• Multiple: perform the child elements an arbitrary num-
ber of times

• Nothing: do nothing.

The language constructs are used to describe the order in
which the service is expecting events to happen. The events
are described in terms of four communication primitives:

• Send: The service will send a message.

• Receive: The service will receive a message.

• Service: the server side view of a call. There are three
elements associated with a Service: serviceInput, ser-
viceOutput and serviceFault. A ServiceInput receives
the input to a call. ServiceOutput and ServiceFault cor-
respond to replying to the client with either the output
or fault message defined in the WSDL description

• Invoke: A client side view of a call. InvokeOutput
is analogous to sending the call request and InvokeIn-
put/InvokeFault are used to model receiving the result
or fault from a call

Initially the Service and Invoke primitives may seem a lit-
tle unintuitive. However, they correspond to the Client (In-
voke) and Server (Service) ends of a Remote Procedure Call
(RPC). It is possible to model an RPC simply in terms of
send and receive but ambiguities can occur when using this
method. For example, it becomes difficult to associate re-
ceive operations with the corresponding send operation if a
callback style operation is performed. Explicitly describing
RPCs using the invoke and service primitives removes these
ambiguities and reduces the complexity of the verification
process.

The sequencing constraints for the bank web service de-
scribed before are shown below in the XML format. They
consist of one “protocol” called pay which begins by a
client invoking the payment_authorise operation. This is
described by the element serviceInput as it is an RPC style
service exposed by the bank. Following this invocation
the sequencing constraints allow a choice of activities: a
serviceFault can occur which equates to an exception be-
ing emitted from the payment_authorise operation. Should
a serviceFault occur, the protocol implicitly terminates as
there are no activities left (all other activities are ruled out
by the choice). The alternative to the serviceFault in the
choice element is a sequence of activities occurring. These
are initiated by a serviceOutput activity, in this case the
“normal” output from payment_authorise being returned.
Following this, the protocol expects the payment_capture

operation to be invoked and will then return a response from
this operation via the serviceOutput element. The proto-
col is then in a terminating state as no more actions are ex-
pected.

<protocolType name="pay">


  ...


  <serviceInput operation="payment_authorise" ...>


    <choice>


      <serviceFault/>


      <sequence>


        <serviceOutput/>


        <serviceInput operation="payment_capture" ...>


    <serviceOutput/>


        </serviceInput>


      </sequence>


    </choice>


  </serviceInput>


</protocolType>


When considering asynchronous services it is possible
that the web service designer has specified full WSDL for
their service, i.e. the WSDL describes the messages which
will be produced as well as consumed. If this is the case,
it is possible to define the sequencing constraints in terms
of that single WSDL document. However, most services
are not defined in this manner so it is necessary to provide
an alternative method for specifying the sequencing con-
straints. To achieve this the language allows one participant
to be defined as the “inverse” of another. For instance, the
send operation which is not defined in one WSDL docu-
ment is the inverse of a receive defined in another WSDL
document. Whether or not this other document exists is not
relevant to the interaction constraints. This simply allows
the language to deal with incomplete but legal WSDL.

It is an issue for the author of the sequencing constraints
to decide what level of detail they wish to provide. Some
may wish to simply model the client and server interac-
tion, preserving the encapsulation offered by the web ser-
vice. Other designers may wish to expose the sequencing
which happens behind the scenes in communicating with
other services. The latter offers advantages in scenarios
such as asynchronous multi-party interactions. It allows the
client of a service to fully reason about the service that they
are using and gives a form of causality where asynchronous
messages are received from other services than that invoked.
The language provides constructs for both options to a ser-
vice designer and does not constrain them to model only
simple interaction involving two parties [16] .

When conversations take place, the participants involved
could be known before the protocol starts, this is referred
to as having statically bound participants. Alternatively the
participants may be discovered as the protocol progresses,
this is referred to as having dynamically bound participants,
the identity being deduced from the content of messages
within the conversation. Naturally, a conversation may have
a mixture of both statically and dynamically bound partici-
pants. Dynamically bound participants is a common occur-
rence in more complicated protocols, such as in Web Ser-



vices Coordination and Web Services Transaction (WS-C
and WS-T) [6, 7]. In WS-C, an application may be passed
a context containing the address of the coordinator to use.
The language allows the specification of such scenarios con-
taining late binding of services using optional attributes
on the communication primitives. Providers of sequenc-
ing constraints should ensure that the participants which are
dynamically bound play no part in the conversation before
they are bound to a concrete service.

4.2. Semantics

The sequencing constraints language has a formal basis
in the π-calculus and there is aπ-calculus representation
which can be derived from the XML format. This repre-
sentation uses similar constructs to those described at the
beginning of this section for the language constructs (se-
quence, parallel, replication and choice). Each of the par-
ticipants in the protocol is connected by multiple channels
(one channel per operation exposed by the service). The
communication primitives described above are modelled as
sending the parts which comprise a wsdl:message along
a channel to an operation. The naming convention is the
same that was described for the Composition Languageπ-
calculus representation, ie. an abbreviation for the operation
name appended with the message type (input - i, output - o,
exception - e).

SHOP = oi(req).τ.ōo<rsp>.(0+di(req).τ

.d̄o<rsp>.0)

BANK = pai(req).τ.( ¯pao<rsp>.

pci(req).τ. ¯pco<resp>.0

+ ¯pae<flt>.0)

Theπ-calculus above corresponds to the UML sequence
diagrams shown in Fig. 1. The shop service is expect-
ing to receive a request over theorder operation channel.
It will then return a response over theorderResponse
channel. Following this, the user is not obliged to call
any other operations as indicated by the terminating 0 in
the choice element (+). However, to confirm the order,
the user must invoke thedispatch operation by send-
ing a request over thedispatch channel. The shop
will then return a response over thedispatchResponse
channel. The bank service can be described in a similar
way, except that should a fault message be sent along the
paymentAuthoriseException channel it is not legal
to invoke any other operations. However, if a response is

returned over thepaymentAuthoriseResponse chan-
nel, paymentCapture may be invoked by sending a re-
quest along the input channel and a response will be re-
turned along the response channel. This is again modelled
as a choice between performing more operations if a mes-
sage is received along the response channel and doing noth-
ing (O) if a fault is received along the exception channel.

5. Verification of the Composition

As described in Section 1 it is desirable to be able to ver-
ify that the composition meets certain correctness require-
ments such as:

• Is free of deadlocks

• Is free of livelocks

• Respects the sequencing constraints placed on con-
stituent services

To achieve this, it is possible to apply the reaction rules de-
fined by pi-calculus. These rules prescribe how a system
denoted in pi-calculus can react and change depending on
the messages which are sent and received. A pair of actions
are said to be complimentary when they perform a send and
a receive over the same channel. If they are both unguarded
and not in the same summation (and so alternatives to each
other) they are termed a redex. The firing of such a redex
constitutes a reaction in the system causing the system to
move from one state to another, i.e.S → S′. The new state
is equivalent to the old state with the actions that formed the
redex removed.

To analyse the system it is necessary to create a “global
view” of the system, containing both the composition and
the sequencing constraints for the services which are be-
ing used. To achieve this, a parallel composition is created
which is a union of the composition and a replicated version
of the sequencing constraints which were defined earlier. It
is necessary to replicate the sequencing constraints as mul-
tiple instances of the same services may be consumed by
the same composition.

SY STEM = (COMP | !SHOP | !BANK)

In order to show that the composition meets the require-
ments identified above we apply the pi-calculus reaction
rules to this system. Whilst doing this it is necessary to
show the following:

1. Following any reaction, either another reaction can oc-
cur or the system is in a completion state

2. From every state, it is eventually possible to reach the
completion state



Where the completion state is defined as: the composition
has been reduced to an empty expression, i.e. no terms are
left, and the sequencing constraints have been reduced to
either an empty expression or are still in the starting state.
Point 1 above shows a lack of deadlocks and point 2 indi-
cates a lack of livelocks within the global picture.

Informally, the global picture models three aspects:
Firstly, the third party web services offered by the service
provider are modelled by the sequencing constraints placed
on them; secondly, the structure of the composition is mod-
elled by the channels connecting differentπ-calculus pro-
cesses in the composition language; thirdly, the interaction
between the composition and the third party services are
captured by the “external channels” in the composition lan-
guage. Showing that following any reaction, there is an-
other reaction possible proves that there are no deadlocks
in the system. Such deadlocks could be because of poorly
formed structure within the composition, or could be be-
cause of a mismatch between the composition and the se-
quencing constraints (the composition does not respect the
sequencing constraints). In order to show that the system is
free of livelocks it is necessary to show that no cycles exist
which would prevent eventual termination.

To formally illustrate the reaction rules, below is a par-
tial view of the system after the first reaction has oc-
curred. The first reaction which was possible involved
the outer process (PO) performing two operations in par-
allel, sending the order# (on) to O along thēpoo channel
and sending the account# (an) to PA along thēpopa chan-
nel. The O and PA processes performed the complemen-
tary receives to the sends performed by PO and thus the
terms formed a redex. This redex caused the transformation
SY STEM →SY STEM ′where the redex is removed. (In the
interest of brevity, not all processes are shown below.)

PO′ = (dpo(dd)+papo(ec)).0

O′ = ōi<req>.oo(rsp).τ.( ¯opa<am> | ōd<in>).0

PA′ = opa(am)).τ. ¯pai<req>.(pao(rsp).τ. ¯papc<rn>+

pae(flt).τ. ¯papo<ec>).0

SHOP = oi(req).τ.ōo<rsp>.(0+di(req).τ

.d̄o<rsp>.0)

SY STEM ′ = (PO′ |O′ |PA′ |PC |D | !SHOP | !BANK)

Following this reaction, it is clear by inspection that an-
other can occur - the sending of request message along the

oi channel to the SHOP from O and causing the reaction
SY STEM ′ → SY STEM ′′. When continually applying the
reaction rules to the system, there are often several states
which can be reached from a given state. This happens, for
example, when a task has alternative outcomes such as nor-
mal and an exception. The use of a model checker eases
checking in these situations as the state space which must
be checked can become larger than is easy to reason about
by inspection.

6. Further Work

Many services are designed such that different logical
meanings of messages are separated into multiple mes-
sages. However, some services are designed in ways that
a message can convey multiple meanings. For instance, the
LoginResponse message type used in the xCBL Order Man-
agement Use Case [8] can indicate both success and failure
of the login. It would be desirable to be able to offer a dif-
ferent sequence of operations dependant on the content of a
message, i.e. be able to inspect the message. We are investi-
gating ways of achieving this and assessing the implications
on the formal model of both the sequencing constraints and
the composition. Initial results indicate that it may be pos-
sible to utilise the type system ofπ-calculus to achieve this.

Current tools support for verification of pi-calculus are
in their infancy. Most do not support the complete language
and require a complex and error prone input syntax. We
are investigating using variousπ-calculus model checkers
[3, 2] to automatically validate composite services. It is also
possible to map our languages onto Promella and then use
the SPIN model checker [15]. In the future we hope to be
able to integrate one of these into the tool used to create the
composition and automatically validate the composition at
creation time.

7. Concluding Remarks

A composite service can be very complex in structure,
containing many temporal and data-flow dependencies be-
tween their constituent services. Furthermore, each indi-
vidual service is likely to have its own sequencing con-
straints over its operations. It is highly desirable therefore
to be able to validate that a given composite service is well
formed: proving that it will not deadlock or livelock and
that it respects the sequencing constraints of the constituent
services. With this aim in mind, the paper has proposed sim-
ple extensions to web service definition language (WSDL)
enabling the order in which the exposed operations should
be invoked to be specified. In addition, the paper proposed
a composition language for defining the structure of a com-
posite service. Both languages have an XML notation and



a formal basis in theπ-calculus (a calculus for concurrent
systems). The formal verification procedure was demon-
strated by applying the pi-calculus reaction rules to a sys-
tem containing the composite service and sequencing con-
straints for each web service.
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Appendix: π-calculus

The π-calculus [18] is an algebra for describing and
analysing the behaviour concurrent systems. Aπ-calculus
system is described in terms of processes, channels and
names. Processes are independent of each other and com-
municate using channels which connect them. Each channel
is referred to by a name and the communication unit along
a channel is a name. A name is the most primitive unit of
addressing inπ-calculus. Processes are built from the fol-
lowing action terms and operators:

• Send [̄x<a>.P ] - Send the name a along channel named
x and then execute process P.



• Receive [x(b).Q] - Receive name b down the channel
named x and then execute Q. This has the effect of
binding all occurrences of x in process Q.

• Choice [P1 + P2] - Execute exactly one of the processes
P1 and P2. The execution of one half of this expression
precludes the other half from ever being executed. This
operator is associative and commutative.

• Parallel Composition [P1 |P2] - Execute the processes
P1 and P2 in parallel. These two processes may com-
municate with each other via named channels. This
operator is associative and commutative.

• Sequence [P1 . P2] - Execute Process P1. When it com-
pletes execute process P2.

• Replication [!P ] - Execute an infinite number of copies
of P in parallel. It is possible to use replication to sim-
ulate recursion and therefore not necessary to include
a separate operator.

There are two special actions that exist in theπ-calculus
which should be considered:τ and 0. Firstly, theτ action
denotes an internal unobservable action. This action may
perform transformations of data or other such actions which
are not externally visible. Secondly, the 0 operator signifies
explicit termination, for instance,P.Q.0 means execute pro-
cess P, when it completes, execute process Q and then stop.
The 0 is often omitted for brevity, simply writingP.Q but
where it adds clarity or cannot be implied from the context
it is included.

Two forms ofπ-calculus exist: monadic and polyadic. In
the monadic form ofπ-calculus, only one name may be sent
along a channel in an execution step. For instance,x̄.<a>.P

is allowed butx̄.<ab>.P is not, assuming that a and b are
separate names. The polyadic form ofπ-calculus allows
multiple names to be sent and received along a channel in
one computation step. It can be shown that the polyadic
form is necessary and that the natural monadic abbrevia-
tion x̄.<a>.x̄<b>.P is not equivalent to the polyadic term
x̄.<ab>.P [17]. This paper deals with the polyadic form of
π-calculus.

Computation inπ-calculus is defined by a set of reac-
tion rules which describe how a system P can be trans-
formed into P’ in one computational step (P→P ′). Ev-
ery computation step in theπ-calculus consists of commu-
nication between two terms (which may be part of sepa-
rate processes or the same process). Communication may
only occur between two terms which are unguarded (that
is they are not part of a sequence prefixed by an action
yet to occur) and not alternatives to each other. Consider
P = (...+x(b).Q) | (...+x̄<a>.R), when the system is in its ini-
tial state P, two parallel processes are executing, and the

latter sends the name a along the channel x. The former pro-
cess receives a along channel x as the sending and receiving
terms are complementary and unguarded (said to form a re-
dex). The action of receiving a has the effect of substituting
a for b in the process Q and the transformationP→P ′ has oc-
curred whereP ′ = {a/b}Q |R. The substitution is denoted by
{a/b} in the process P’. A side effect of this communication
occurring is that the alternatives (denoted by ...) have been
discarded and any communication that they would have per-
formed has been pre-empted. We have now performed one
computation step in the system and the system is in a new
state.

In many cases there may be multiple states which a pro-
cess can be transformed into. For example, following pro-
cessP = (x̄<a>.Q) | (x(b).R) | (x(c).S) there are two transfor-
mations possibleP→P ′or P→P ′′. In the process P, name
a is being sent along the channel x but can only be received
by one of the other two parallel compositions. Therefore
after state P, the following states areP ′ = Q | {a/b}R | (x(c).S)

which assumes that the name a is received by the middle
composition causing a substitution of a for b in process R;
or P ′′ = Q | (x(b).R) | {a/c}S where a has been received by the
other composition and is substituted for c in process S.

It is possible to apply the reaction rules recursively, that
is apply them to the state P’ that process P has moved into
following the previous computation step. If this is followed
to its natural conclusion, it can be shown that the system is
free of deadlocks and livelocks. This is achieved by reduc-
ing the system using the reaction rules and showing that one
of the following always holds:

1. Following any reaction, another reaction can occur.

2. Every process in the system is either in its initial state
or a termination state where no action terms remain.


