

ADAPT
IST-2001-37126

Middleware Technologies for Adaptive and

Composable Distributed Components

Project funded by the
European Commission under the
Information Society Technologies
Programme of the 5th Framework

(1998-2002)

Revised Evaluation Plan

Deliverable Identifier: D16
Delivery Date: 19th August 2004
Classification: Public Circulation
Authors: Stuart Wheater
Document version: 4.0 3rd August 2004

Contract Start Date: 1st September 2002
Duration: 36 months
Project coordinator: Universidad Politécnica de Madrid (Spain)
Partners: Universitá di Bologna (Italy), ETH Zürich (Switzerland), McGill

University (Canada), Universitá degli Studi di Trieste (Italy),
University of Newcastle (UK), Arjuna Technologies Ltd (UK)

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

Evaluation Plan 2

Table of Contents

1 ADAPT Evaluation Plan .. 3

1.1 Strategy for Evaluating Non-Functional Capabilities and Attributes............... 3
1.1.1 Basic Service Support Experiments ... 3

1.1.1.1 Via the Front Tiers.. 3
1.1.1.2 Via the Middle Tier .. 4
1.1.1.3 Via the Back Tier.. 5

1.1.2 Composite Service Support Experiments ... 5
1.1.2.1 Composite service execution engine .. 5
1.1.2.2 Advanced transaction support .. 6

1.2 Strategy for Evaluating Functional Capabilities and Attributes....................... 6
1.2.1 Proof-of-concept implementation... 7
1.2.2 Service description goal.. 7
1.2.3 Composability goal... 7
1.2.4 Configuration goal.. 7
1.2.5 Adaptation goal... 8
1.2.6 Process definition goal.. 8
1.2.7 Replication goal.. 8
1.2.8 Security goal ... 9
1.2.9 Transaction models goal... 9

2 References .. 10
Appendix A Summary of Relevant Existing and Proposed Technologies.................. 13

A.1 Java 2 Platform, Enterprise Edition (J2EE).. 13
A.2 CORBA Component Model (CCM)... 14
A.3 Microsoft’s .NET.. 17
A.4 GGF Grid.. 17
A.5 Business Transaction Protocol (BTP)... 19
A.6 Web Services Transaction (WS-Transaction) and Web Services Coordination
(WS-Coordination) ... 20
A.7 Web Services Composite Application Framework (WS-CAF)...................... 21

A.7.1 WS-Context (WX-CTX)... 22
A.7.2 WS-CoordinationFramework (WS-CF) ... 23
A.7.3 WS-Transaction Management (WS-TXM) .. 24

A.8 Business Process Execution Language for Web Services (BPEL4WS)......... 25
A.9 Web Services Choreography Interface (WSCI) ... 27
A.10 Web Services Flow Language (WSFL).. 28
A.11 Microsoft’s XLANG... 28
A.12 Web Services Conversation Language (WSCL) .. 29
A.13 Web Services Description Language (WSDL)... 29
A.14 Web Service Security (WS-Security) ... 32
A.15 Web Services Reliable Messaging Protocol (WS-ReliableMessaging) 32
A.16 Universal Description, Discovery and Integration (UDDI)............................ 33
A.17 OMG Interface Definition Language (OMG IDL)... 34
A.18 CORBA Interface Repository (CORBA IR) .. 34
A.19 JBoss Clustering ... 34
A.20 Microsoft Cluster Server (MSCS) .. 35
A.21 IBM’s WebSphere Clustering .. 36
A.22 BEA’s WebLogic Clustering.. 36

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

Evaluation Plan 3

1 ADAPT Evaluation Plan
The purpose of this document is to set out a plan for evaluating the results of the
ADAPT project. This evaluation plan will be used to not only to evaluate the project but
also to serve as a guide during the project. The resulting evaluation is intended to cover
both the functional and non-functional capabilities of the project’s results.

The overall strategy for evaluating the non-functional capabilities of ADAPT’s results is
based around constructing applications that can be used to examine the Availability,
Adaptability, Scalability and Performance of the ADAPT platform. To ensure that the
evaluation is comprehensive the applications will encompass both basic and composite
service support. The details of this strategy are given in section 1.1.

The overall strategy for evaluating the functional capabilities of ADAPT’s results is
based around two complementary components. Firstly, to provide a proof-of-concept
implementation of an application on top of the ADAPT platform, this will be used to
provide insight into any inadequacies in the functional capabilities of the ADAPT
platform. And secondly, to identify the key high-level technical goals of the project,
then based on these goals, to compare the technical capabilities and attributes of the
ADAPT approach with those set of existing technologies. The details of this strategy are
given in section 1.2.

1.1 Strategy for Evaluating Non-Functional Capabilities and
Attributes

The main non-functional goals of the ADAPT project are in the areas of Availability,
Adaptability, Scalability and Performance. To make possible the evaluation of these
goals a series of applications will be constructed from which quantitative results can be
obtained. These applications will be designed to exercise both the Basic and Composite
service support of the ADAPT platform. The follow two sections will describe the
experiments that will be performed by the applications, on the Basic and Composite
service support.

1.1.1 Basic Service Support Experiments

The experiments targeted at the Basic Services support will examine the characteristics
of the system via each of the three tiers: web service support (front tier), EJB container
support (middle tier) and database container support (back tier). Each of the
experiments on a particular tier will naturally also exercise the subsequent tiers, for
example, experiments on the middle tier will also exercise the back tier. The
experiments that will be performed on the system are described below.

1.1.1.1 Via the Front Tiers
The experiments performed on the system via the front tier will be based around the
implementation of one of the WS-I’s Sample Application services [34][35] and the trace
data used for each experiment will be based on one or more of the WS-I’s Sample
Application use cases. This system will be used to perform the following experiments:

• The performance of the front tier will be determined by measuring the systems
average throughput and average latency. This experiment will be performed with
different values of the following parameters:

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

Evaluation Plan 4

o Degrees of replication.

o Number of simulated clients (scalability).

o Number of failed replicas (availability).

• The adaptability of the front tier will be determined by measuring the average
time it takes to react to a failure (detect and reconfigure) and to react to a
recovery. This experiment will be performed with different degrees of
replication.

1.1.1.2 Via the Middle Tier
The experiments performed on the system via the middle tier will be based around the
existing ECPerf [37] benchmark. ECPerf is a benchmark designed to measure
performance and scalability. In addition some experiments will be performed using the
implementation of the Enterprise Java Beans that support a WS-I’s Sample Application
service. Trace data used for each experiment will be derived from one of the WS-I’s
Sample Application use cases. To make fine-granularity analysis, some micro
benchmarks will analyze the behavior for individual components and access patterns.
The following experiments will be performed with one or more of these applications:

• Evaluation of the system during normal processing (no joins/leaves the group).
These results will be analysed under various system conditions determined by
the following parameters:

o Replication algorithm.

o Number of servers.

o Load submitted to the system.

o Type of application (ECPerf, WS-I, micro-benchmarks)

• Profiling: Analyse of where most of the time is spent: application logic,
communication/state-transfer, etc.

• Evaluation of the system after a server crash that causes a failover (server leaves
the group). When the failover occurs we will analyse the following behaviour:

o Semantics observed by the client.

 Percentage of aborts (current transaction aborts) if applicable.

 Delay observed by the client from its last request to old server to
getting the first response from the new server.

o Time from crash of old server to time new server is partially or fully
operational.

• Evaluation of the system at recovery (crashed or new server joins the group).

o Time it takes for new server to request join to be fully operational
member of the group.

o Effect of join to the performance in the rest of the system.

 Throughput/response time observed by the client during recovery
time.

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

Evaluation Plan 5

1.1.1.3 Via the Back Tier
The experiments performed on the system via the back tier will be based around the
specially designed SQL queries and workload patterns that will exercise different
characteristics of the database tier [36]. In addition, SQL queries derived form those
produced by EJBs that implement a WS-I’s Sample Application service will be used for
further experiment. This system will be used to perform the following experiments:

• The scalability of configurations with an increasing number of replicas will be
quantified in terms of throughput relative to the throughput of a single node.
Different workloads ranging from read-only to write-only will be used. The
response time will also be measured for increasing loads to find out whether the
throughput is increased without increasing significantly the response time (see
the technical report in the annex for the experiments run for this evaluation).

• In order to quantify the benefits of online recovery, the throughput and the
response time during recovery will be compared for an online recovery and
offline recovery. Experiments will be run for increasing log sizes.

• Admission control is in charge of regulating the degree of concurrency within
the database by changing the size of the DB connection pool. Experiments will
be run to find out:

o The optimal degree of concurrency for different workloads (CPU-bound,
IO-bound).

o Performance with different fixed size DB connection pools and adaptive
size DB connection pools.

• The scalability under different degrees of load imbalance (from totally balanced
to totally imbalanced) will be quantified to compare the performance of the
middleware with and without load balancing.

In addition to the experiments above some existing benchmarks, such as TPC
Benchmark W (TPC-W) [38] will be examined, to see if they can provide any useful
addition quantitative results.

1.1.2 Composite Service Support Experiments
The experiments targeted at the Composite Services support will examine the
characteristics of the two main software components: the composite service execution
engine and the advanced transaction support. The experiments that will be performed on
each components of the system are described below.

1.1.2.1 Composite service execution engine
The performance, scalability and adaptability of the composite service execution engine
will be determined by performing a series of experiments. These experiments will use a
set of process definitions that will exercise differing characteristics of the engine. The
process definitions what will be used are:

• “A long chain” of serial executed empty (null operation) tasks, and will be used
to determine:

o The coordination latency of the coordination engine.

• “Single empty (null operation) task”, and will be used to determine:

o The average throughput and average latency involved in initiating a task.

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

Evaluation Plan 6

• “Single long idle task”, and will be used to determine:

o The scalability of the engine with respect to coordinating large numbers
of tasks.

1.1.2.2 Advanced transaction support
The performance and scalability of the advanced transaction support will be determined
by performing a series of experiments. A set of “dummy transaction participants” will
be implemented with differing temporal characteristics for their operations. For
example, a participant could be implemented whose prepare operation takes around 5
seconds to complete. These “transaction participants” will be used in the following
experiments:

• The performance of the advanced transaction support will be determined by
measuring the system’s average throughput and average latency. This
experiment will be performed with different values of the following parameters:

o Number of registered participants

o Number of simulated clients (scalability)

o Different “speed” participants

o Different interaction scenarios, e.g. commit and rollback.

• The average latency associated with starting and terminating an “empty
transaction” will be measured, and used to estimate the overhead involved in
creating, starting and terminating.

• The average latency associated with registering participants with a transaction
will be measured, and used to estimate the overhead involved in participant
registration.

1.2 Strategy for Evaluating Functional Capabilities and Attributes
The strategy for evaluating the functional results of the ADAPT project has two
complementary components. Firstly, to provide a proof-of-concept implementation of
an application on top of the ADAPT platform, and secondly to identify the key technical
goals of the project. Based on these goals, it is possible to compare the technical
capabilities and attributes of the ADAPT approach with those of a selected set of
existing and proposed technologies. These high-level comparisons lead to questions
which can by used to evaluate the results of the ADAPT project. The key technical
goals of the ADAPT project, in the area of functionality, have been identified as to
make advances in support for:

• Service description

• Composability

• Configuration

• Adaptation

• Process definition

• Replication

• Security

• Transaction models

In the following sections each of ADAPT’s key technical goals will be examined, and
the functional capabilities and attributes of a selected set of technologies analysed. This
enables the production of high-level questions which can be used to evaluate the
functionality that the ADAPT project has derived.

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

Evaluation Plan 7

1.2.1 Proof-of-concept implementation
The ADAPT functional evaluation will include a proof-of-concept implementation on
top of the ADAPT platform, the purpose of this implementation is to validate the
functionality provided by the ADAPT platform. The proof-of-concept implementation
will be based on composing two different designs of a Supply Chain Management
system: WS-I’s (Web Services Interoperability) Sample Application Specification
[34][35] and the RosettaNet’s Order Management (Cluster 3) Standards [39][40]. For
more details of the implementation see the ADAPT “Demonstrator Specification” [33].

1.2.2 Service description goal
Service description is an integral part of the overall service composition goals of the
ADAPT project. Through service description the syntax and semantics of the required
interactions with services can be published. The functional evaluation of the service
description capabilities of the ADAPT platform is based around the analysis of the Java
2 Platform - Enterprise Edition (section A.1), CORBA Component Model (section A.2),
Web Services Description Language (section A.13), OMG Interface Definition
Language (section A.17), Web Services Choreography Interface (section A.9), Web
Services Conversation Language (section A.12), CORBA Interface Repository (section
A.18) and Web Services Reliable Messaging Protocol (section A.15). These
technologies have a wide range of focuses including: interface specification, guaranteed
delivery semantics and choreography specification. Analysing these technologies has
contributed to the following evaluation questions:

• What is the additional information about ADAPT services that is required to
support composition?

• Analysis of other technologies suggests that information about: interface,
delivery semantics, transaction semantics, and choreography, should be
provided. Is this addressed by ADAPT?

1.2.3 Composability goal
Composability is a goal for the ADAPT project at all level within the platform, not just
for services. Without achieving some level on composability the complexity involved
composition applications would become unmanageable. The functional evaluation of
the composability capabilities of the ADAPT platform is based around the analysis of
the CORBA Component Model (section A.2), GGF Grid, (section A.4) and Microsoft’s
.NET (section A.3). Analysing these technologies has contributed to the following
evaluation questions:

• What is the additional support that ADAPT provides to enable composition of
services?

• Analysis of other technologies suggests that support for: service discovery and
long-lived transaction, are required. How are they supported by ADAPT?

1.2.4 Configuration goal
The configuration goal is based around providing the ability to specify the behaviour of
ADAPT platform, in such a way that does not require code changes. This goal will
facilitate composability and adaptability. The functional evaluation of the configuration
capabilities of the ADAPT platform is based around the analysis of the Java 2 Platform
- Enterprise Edition (section A.1), Microsoft’s .NET, (section A.3) and Universal

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

Evaluation Plan 8

Description, Discovery and Integration (section A.16). Analysing these technologies has
contributed to the following evaluation questions:

• What is the additional support that ADAPT provides to enable configurable
services?

• Analysis of other technologies suggests that support for system meta-
information and meta-types are required. Are they supported by ADAPT?

1.2.5 Adaptation goal
The adaptation goal is based around providing the ability to dynamically specify the
behaviour of ADAPT supported applications, in such a way that these applications can
change to meet their new requirements. The functional evaluation of the adaptation
capabilities of the ADAPT platform is based around the analysis of Java 2 Platform -
Enterprise Edition (section A.1). Analysing these technologies has contributed to the
following evaluation questions:

• What is the additional support that ADAPT provides to enable adaptation of
services?

• Analysis of other technologies suggests that support for dynamic application
update is required. Are these addressed by ADAPT?

1.2.6 Process definition goal
Process definition is an important part of the service composition goal of the ADAPT
project. Through process definition the internal behaviour of composite services can be
described. The functional evaluation of the process definition capabilities of the
ADAPT platform is based around the analysis of Web Services Flow Language (section
A.10), Microsoft’s XLANG (section A.11) and Business Process Execution Language
for Web Services (section A.8). Analysing these technologies has contributed to the
following evaluation questions:

• What are the additional techniques that ADAPT provides to enable process
definition?

• Analysis of other technologies suggests that support for: multiple conversations,
compensation, exception handling, flow model and global model, are required.
Are these addressed by ADAPT?

1.2.7 Replication goal
Replication is an important aspect of supporting the levels of service availability that
ADAPT applications require. The functional evaluation of the replication capabilities of
the ADAPT platform is based around the analysis of Microsoft Cluster Server (section
A.20), IBM’s WebSphere Clustering (section A.21), BEA’s WebLogic Clustering
(section A.22) and JBoss Clustering (section A.19). Analysing these technologies has
contributed to the following evaluation questions:

• What is the additional support that ADAPT provides to enable replication?

• Analysis of other technologies suggests that support for: consistent replication in
the context of transaction processing, state replication, cluster partitioning,
dynamic cluster membership, load balancing and model cloning, are required.
Are these addressed by ADAPT?

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

Evaluation Plan 9

1.2.8 Security goal
Security is an important part of the service composition goal of the ADAPT project.
Without security support composite services would not be able to span organisations.
The functional evaluation of the security capabilities of the ADAPT platform is based
around the analysis of Java 2 Platform - Enterprise Edition (section A.1) and Web
Service Security (section A.14). Analysing these technologies has contributed to the
following evaluation questions:

• What is the additional support that ADAPT provides to enable security?

• Analysis of other technologies suggests that support for: container managed
security and message integrity, message confidentiality and access control, is
required. Are these addressed by ADAPT?

1.2.9 Transaction models goal
Transaction models is an important part of the service composition goal of the ADAPT
project. Without consistent transaction models the behaviour of composite services
can’t be ensured, in the presence of partial failure. The functional evaluation of the
transaction modelling capabilities of the ADAPT platform is based around the analysis
of Java 2 Platform - Enterprise Edition (section A.1), Business Transaction Protocol
(section A.5), Web Services Coordination and Transaction (section A.6) and Web
Services Composite Application Framework (section A.7). Analysing these
technologies has contributed to the following evaluation questions:

• What is the additional support that ADAPT provides to enable transactional
services?

• Analysis of other technologies suggests that support for: container managed
transactions, non-atomic transactions, transaction qualifiers and long-lived
activities, is required. Are these addressed by ADAPT?

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

Evaluation Plan 10

2 References
[1] Sandeep Chatterjee and James Webber, “Developing Enterprise Web Services”,

Prentice Hall, 2003.

[2] Java 2 Platform, Enterprise Edition Specification
(http://java.sun.com/j2ee)

[3] OASIS Business Transaction Protocol (BTP), Committee Specification 1.0
(https://www.oasis-open.org/committees/business-transactions/)

[4] Web Services Transactions (WS-Transaction)
(http://www.ibm.com/developerworks/library/ws-transpec/)

[5] Web Services Coordination (WS-Coordination)
(http://www.ibm.com/developerworks/library/ws-coor/).

[6] Business Process Execution Language for Web Service (BPEL4WS)
(http://www.ibm.com/developerworks/library/ws-bpel/)

[7] Web Service Choreography Interface (WSCI)
(http://www.w3.org/TR/wsci/)

[8] Web Service Flow Language (WSFL)
(http://www.ibm.com/software/solutions/webservices/pdf/WSFL.pdf)

[9] Microsoft’s XLANG
(http://www.gotdotnet.com/team/xml_wsspecs/xlang-c/default.htm)

[10] Web Service Conversation Language (WSCL) 1.0
(http://www.w3.org/TR/wscl10/)

[11] Web Services Description Language (WSDL) 1.1 Specification
(http://www.w3.org/TR/wsdl)

[12] Web Services Security 1.0 (WS-Security)
(http://www-106.ibm.com/developerworks/webservices/library/ws-secure/)

[13] Universal Description, Discovery and Integration (UDDI) 3.0 Specification
(http://www.uddi.org/specification.html)

[14] OMG Interface Definition Language (OMG IDL)
(http://www.omg.org/cgi-bin/doc?formal/02-11-03)

[15] CORBA Interface Repository (CORBA IR)
(http://www.omg.org/cgi-bin/doc?formal/02-11-03)

[16] Microsoft .Net
(http://www.microsoft.com/net/)

[17] T. Thai and H.Q. Lam, “.NET Framework Essentials, Second Edition”, O’Reilly
and Associates, ISBM 0-596-00302-1.

[18] CORBA Components
(http://www.omg.org/cgi-bin/doc?formal/02-06-65)

[19] The Physiology of the Grid: An Open Grid Services Architecture for Distributed
Systems Integration
(http://www.globus.org/research/papers/ogsa.pdf)

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

Evaluation Plan 11

[20] The Open Grid Services Architecture (OGSA) Platform
(http://www.ggf.org/ogsa-wg)

[21] Open Grid Services Infrastructure (OGSI)
(http://www.ggf.org/documents/GFD/GFD-R-P.15.pdf)

[22] Web Services Reliable Messaging Protocol (WS-ReliableMessaging)
(http://msdn.microsoft.com/ws/2003/03/ws-reliablemessaging/)

[23] Web Services Composite Application Framework (WS-CAF) Primer
(http://www.arjuna.com/library/specs/ws_caf_1-0/WS-CAF-Primer.pdf)

[24] Web Service Context (WS-CTX)
(http://www.arjuna.com/library/specs/ws_caf_1-0/WS-CTX.pdf)

[25] Web Service Coordination Framework (WS-CF)
(http://www.arjuna.com/library/specs/ws_caf_1-0/WS-CF.pdf)

[26] Web Service Transaction Management (WS-TXM)
(http://www.arjuna.com/library/specs/ws_caf_1-0/WS-TXM.pdf)

[27] Technical Overview of Clustering in Windows Server 2003
(http://www.microsoft.com/windowsserver2003/docs/ClusteringOverview.doc)

[28] Sacha Labourey and Bill Burke, “JBoss Clustering”, JBoss Group, August 2003.

[29] Özalp Babaoğlu, Alberto Bartoli, Vance Maverick, Alberto Montresor, Davide
Rossi and Jakša Vučković, “JBoss Clustering Analysis”, ADAPT report, V1.1,
March 2003.

[30] WebSphere Software Platform
(http://www-3.ibm.com/software/info1/websphere/)

[31] BEA WebLogic Server
(http://www.bea.com/framework.jsp?CNT=index.htm&FP=/content/products/se
rver)

[32] Additional Structuring Mechanisms for the OTS Specification
(http://www.omg.org/cgi-bin/doc?formal/2002-09-03).

[33] “Demonstrator Specification”, ADAPT project (IST-2001-37126), Deliverable
D17, March 2004.

[34] “Supply Chain Management Sample Application Architecture”, WS-I, Version
1.0, December 2003
(http://www.ws-i.org/SampleApplications/SupplyChainManagement/2003-
12/SCMArchitecture1.01.pdf).

[35] “Supply Chain Management Use Case Model”, WS-I, Version 1.0, December
2003
(http://www.ws-i.org/SampleApplications/SupplyChainManagement/2003-
12/SCMUseCases1.0.pdf).

[36] Marta Patiño-Martínez, Ricardo Jiménez-Peris, Bettina Kemme and Gustavo
Alonso, “Consistent Database Replication at the Middleware Level”, ACM
Transactions on Computers, submitted.

[37] ECPerf Benchmark Specification (http://java.sun.com/j2ee/ecperf/)

[38] TPC Benchmark W (http://www.tpc.org/tpcw/default.asp)

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

Evaluation Plan 12

[39] “RosettaNet Standards”, RosettaNet(http://www.rosettanet.org/standards).

[40] “RosettaNet Cluster 3: Order Management”, RosettaNet
(http://www.rosettanet.org/Cluster3).

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

Evaluation Plan 13

Appendix A Summary of Relevant Existing and Proposed
Technologies

A.1 Java 2 Platform, Enterprise Edition (J2EE)
The Java 2 Platform, Enterprise Edition (J2EE) [2] is a collection a Java APIs that
support commonly used distributed computing technologies and network services. The
purpose of these APIs is to support the rapid development of Enterprise Applications. In
general, the implementer of an Enterprise Application has many different issues to
address, for example, providing Internet interfaces along with providing Intranet
interfaces, also having to accessing legacy applications and databases.

A typical J2EE Enterprise Application provides its Internet interfaces via web pages,
sometimes e-mail and in the future via Web services [1]. As for Intranet interfaces,
J2EE supports both remote procedure call and message oriented integration with legacy
applications and supports interaction with SQL based relational databases.

The J2EE APIs are numerous and provide an extensive set of functionality required to
construct Enterprise Applications. In the rest of this section the following J2EE APIs
will be briefly described:

• JDBC

• EJB

• Java IDL (CORBA)

• RMI

• JNDI

• JMS

• JTA

• Servlet/JSP

• JavaMail

The JDBC API allows a Java application to access relational databases, which may or
may not be remotely hosted. Through the JDBC API, applications can execute SQL
statements, retrieve results, and propagate changes back to a database. The designers of
JDBC have attempted to create a platform-neutral interface between database and
application, where database vendors or third-party developers providing a JDBC driver,
which is a set of classes that implements the required functions for a particular database.

Enterprise Java Beans (EJB) is a component model for units of business logic and
business data. The EJB model attempts to separate the beans, their container and the
server. The beans are provided by the application implementer, and three types of bean
are supported: session, entity and message-driven. Session beans are used to encapsulate
business logic; Entity beans are used to encapsulate business data; Message-driven
beans are used to support asynchronous interaction with business logic. The EJB
container manages a set of beans, handling such thing as: lifecycle management,
instance pooling, distributed transaction management and security. The EJB server itself
hosts the EJB containers.

The Java IDL API provides an interface between Java application and distributed object
and services build using the Common Object Request Broker Architecture (CORBA). It
is possible that such distributed objects and services could be legacy applications.

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

Evaluation Plan 14

The Java Remote Method Invocation (RMI) API is Java’s native scheme for creating
and using remote objects. Java RMI is “Java native” because it deals directly with Java
objects, this makes Java RMI particularly suitable for accessing remote EJBs.

The Java Naming and Directory Interface (JNDI) is an API that supports accessing
naming and directory services from Java applications. JNDI is an integral part of the
J2EE framework; it is used by J2EE components to access various runtime resources
such as the transaction manager, EJB home references and JDBC data sources.

The Java Messaging Service (JMS) provides an API for Java applications to perform
reliable asynchronous messaging. The JMS API is a portable interface between Java
applications and a native message-oriented middleware (MOM) system. This allows
Java applications to interact with legacy applications through the MOM system.

The Java Transaction API (JTA) allows Java applications to manage ACID transactions
based on the X/Open XA API for distributed transactions.

The Java Servlet API and JavaServer Pages (JSP) provide a standard way to extend
Web servers to support dynamic content generation. These two techniques though
related provide different approaches dynamic content generation. Java Servlet API
allows operations to be written which directly handle HTTP requests, and directly
generate content, usually HTML, as a response to the request. It is not unusual for this
generated content to contain information that has been obtained via EJBs from a
database. JSPs provide a higher-level approach; a JSP is usually HTML or XML that
has embedded within it special tags that cause fragments of Java to be executed. These
fragments of Java can cause HTML or XML to be generated that is specific to the
request.

The JavaMail API provides a platform and protocol-independent framework to build
Java applications that utilise Internet e-mail. This allows J2EE Enterprise Applications
to interact with users or other programs via e-mail.

As well as defining APIs, the J2EE standard also addresses issues such as deployment.
The structure of entities called WAR (Web Application aRchive) and EAR (Enterprise
Application aRchive) files are specified. WAR files contain static content such as
HTML files, along with JSP and the Java class required to generate dynamic content.
WAR files also contain a deployment descriptor, in XML, which specifies things such
as how to map a URL to a servlet and how to map a servlet to a Java class. EAR files
contain a collection of WAR and JAR files that make up an enterprise application, along
with a deployment descriptor, in XML, which specifies such things as the “context root”
associated with a WAR file. Most J2EE platforms support redeployment of EAR and
WAR files, that is if an EAR or WAR needs to be updated, then all that is required is to
replace the existing file. The change will be spotted by the J2EE platform and the old
application will be replaced by the new version.

A.2 CORBA Component Model (CCM)
The CORBA Component Model (CCM) [18] is an OMG standard designed to extend
the CORBA 2 model to address configuration and deployment. The CORBA
Component Model first appeared in CORBA 3.0, and introducing the concept of

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

Evaluation Plan 15

components to CORBA. Components go beyond the existing concept of CORBA
interfaces, which were specified CORBA 2’s OMG IDL.

In the CORBA Component Model a component is modeled as a set of attributes and a
set of ports. The attributes of a component are mainly intended to be used as
configuration properties. These component attributes differ from OMG IDL attributes,
in that, in the context of CCM, attributes may raise exceptions when misused. The ports
of a component are of four types: facets, receptacles, event sinks and event sources.

• Facets are distinct named interfaces provided by the component for client
interaction.

• Receptacles are named connection points that describe the component’s ability to
use a reference supplied by some external agent.

• Event sources are named connection points that emit events of a specified type to
one or more interested event consumers, or to an event channel.

• Event sinks are named connection points into which events of a specified type may
be pushed.

The use of facets allows the CCM to make a distinction between interface features that
are used primarily for configuration, and interface features that are used primarily by
application clients during normal application operation. A client can obtain the object
references that correspond to the component’s facets using the equivalence interface,
which all components possess.

In the CCM a component possesses a meta-type, home, through which it can be
managed. The home meta-type maps to a set of interfaces which allow component
instances to be created and found.

Below is an example of a component description in CORBA 3’s Interface Definition
Language (IDL), the language used to describe components.
component BankAccount
{
 attribute Boolean active;
 attribute BankAccountType type;

 provides CustomerFacet customer;
 provides BankAssistantFacet bankAssistant;
 provides BankManagerFacet bankManager;

 uses BankPlug bank;

 publishes OverdrawnEvt overdrawn;
 emits DirectDebitPaymentEvt directDebitPayment;
 consumes InterestRateChangeEnv interestRateChange;
};

This example contains the specification of a component BankAccount; this component
possesses:

• Two attributes active and type, of types Boolean and BankAccountType
respectively.

• Three facets customer, bankAssistant, and bankManager, the interface exposed
by these facets are of types CustomerFacet, BankAssistantFacet, and
BankManagerFacet respectively.

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

Evaluation Plan 16

• One receptacle bank, the interface exposed by this receptacle is of types
BankPlug.

• Two event sources overdrawn and directDebitPayment, along with one event
sink interestRateChange. Note that the event source overdrawn is indicated to be
a publisher, which means that its events can go to multiple destinations, whereas
the event source directDebitPayment is indicated to be an emitter, so only goes
to one destination.

Below is an example of a home meta-type description in CORBA 3’s IDL. This
example contains a home meta-type called BankAccountHome for a component
BankAccount.
home BankAccountHome manages BankAccount primaryKey BankAccountKey
{
 factory create_bank_account(in long id)
 raises (Components::DuplicateKeyValue, Components::InvalidKey);

 finder search_bank_account(in long id)
 raises (Components::UnknownKeyValue, Components::InvalidKey);
};

The meta-type called BankAccountHome specified a primary key of BankAccountKey
and describes a factory operation create_bank_account and a finder operation
search_bank_account. Both the component and home meta-types are mapped to a set of
IDL file, which contains the interfaces that the user will have to provide corresponding
implementation. The relationship between the component’s meta-types and their
associated implementation is specified in OMG Component Implementation Definition
Language (CIDL), an example of which is below:
composite entity BankAccountImpl
{
 home executor BankAccountHomeImpl
 {
 implements BankAccountHome;
 managers BankAccountImpl;
 };
};

The CCM supports a set of mechanisms to support configuration. These mechanisms
can be deployed in a number of ways in a component implementation or application.
The configuration is based around setting the attributes associated with the component.
These attributes can be set using configuration objects that encapsulate the
configuration attributes, and is used configure any instance of the component it is
applied to. Another mechanism is to use factory based configuration, by which when an
instance of the component is created by the factory, the factory sets the attributes. The
home meta-type of a component may support the HomeConfiguration interface, which
allow interaction with it’s configuration information.

In order to allow deployment of CORBA component, its implementations, a software
package descriptor and other files, needs to be assembled into a software package
(component package), in the form of a ZIP archive file. The contents of a software
package are described by a software package descriptor. The descriptor consists
information about the software followed by one or more sections describing
implementations of that software. Such software package descriptors are written in
CORBA Software Descriptor (CSD), which is encoded in XML.

A component assembly package is the mechanism for deploying a set of interrelated
component implementations. A component assembly package contains a component
assembly descriptor, which describes what components make up the assembly, how

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

Evaluation Plan 17

those components are partitioned, and how they are connected to each other. A
component assembly descriptor is the recipe for deploying a set of interconnected
components.

A.3 Microsoft’s .NET
The Microsoft .NET initiative was announced in July 2000 [16][17]. The Microsoft
.NET platform is an application development framework that provides tools, services
and APIs to support the construction of sophisticated applications.

One of the key goals to .NET initiative was to facilitate better interoperability between
libraries and components written in different programming languages. To allow this the
.NET platform supports the Common Language Runtime (CLR), which manages and
executes code written in .NET languages. Microsoft and its partners have provided CLR
compatible versions of many popular languages, for example, Managed C++, Visual
Basic.NET (VB.NET) and C#. C#, which is similar to Java, has been designed to take
advantages of CLR features, such as garbage collection, exception management, and
reflection. .NET language compilers produce Microsoft’s Intermediate Language (IL),
which is loaded and verified by the CLR, and when required to be executed it is passed
to a “just in time” compiler to be converted to executable machine instructions. A key
element of .NET languages is their support for attributes. Attributes are names, and
optionally values, which can be placed in the code, and associated with classes or
operations. Attributes allow the infrastructure to automatically inject code at runtime, to
perform the required effects.

A part of the .NET platform is a set of .NET Enterprise Server products that shorten the
time required to develop large-scale business systems. These products include
Application Center 2000, BizTalk Server 2000, Commerce Server 2000, Exchange
Server 2000, Host Integration Server 2000, Internet Security and Acceleration 2000, and
SQL Server 2000. These services are highly reusable, and can be easily integrated into
new applications. Along with these services the .NET platform also provides sets of
classes to support particular types of application needs. The ADO.NET classes enable
developers to interact with data from databases, as XML. The ASP.NET classes support
the development of Web-based applications and Web services. The Windows Forms
classes support the development of desktop-based client applications.

Support for Web services is an important aspect of .NET. Programming Web services
has been make comparatively easy, all that is required to allow functionality to be
exposed as a Web service is to add an attribute to the code that provides the
implementation to indicate that it is a Web service, and add attributes to the methods
which are to be exposed by the Web service. Web service discovery is supported by the
use of DISCO files. DISCO files contain elements that refer to a set of Web service’s
endpoint and WSDL, a DISCO file can also contain an element that exposes all Web
services below a particular subdirectory.

A.4 GGF Grid
Grid technologies are based around providing support for the sharing and coordinated
use of geographically and organizationally distributed resources. To support
standardization in the area Grid technologies the Global Grid Forum (GGF) has set up a
number of working groups whose purpose is to provide specifications, guidelines and
recommendations. The results of one such working group, the Open Grid Service

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

Evaluation Plan 18

Architecture Working Group (OGSA-WG), is the Open Grid Service Architecture
(OGSA) Platform [19][20]. This is an attempt to standardise the approaches to and
mechanisms for solving basic problems common to many Grid systems, namely:
communicating with other services, establishing identity, negotiating authorisation,
service discovery, error notification and managing service collections

The OGSA Platform has three principal elements: the Open Grid Services Infrastructure
(OGSI), the OGSA Platform Interfaces, and the OGSA Platform Models.

• Open Grid Services Infrastructure (OGSI) [21] defines mechanisms for creating,
managing and exchanging information among Grid services. Grid services are
Web services that conform to a set of conventions that define how a client
interacts with a Grid service. These conventions cover both how the Grid service
behaves and the interfaces the Grid service provides. Grid service interfaces are
described in WSDL, with OGSI extensions (GWSDL) to allow: extension of
Web services interfaces, asynchronous notification of state change, references to
instances of services, collections of service instances, and service state data that
augments the constraint capabilities of XML schema definition.

• OGSA Platform Interfaces build on OGSI mechanisms to define interfaces and
associated behaviors for various functions not supported directly within OGSI,
such as service discovery, data access, data integration, messaging, and
monitoring.

• OGSA Platform Models support these interface specifications by defining
models for common resource and service types.

One of the notable difference between non-Grid Web services and Grid services is that
Grid services use Grid Service Handles (GSH) and Grid Service References (GSR) to
gain access to a Grid service instance, whereas, non-Grid Web services tend to use URIs
to address services. A GSH can be regarded as a network-wide pointer to a specific Grid
service instance. The GSH does not carry enough information to allow a client to
communicate directly with the service instance. Instead, a client wishing to
communicate with a Grid service instance must resolve the GSH to a GSR. The Grid
service instance is then accessible to a client application through the use of the GSR.

Unlike non-Grid Web services, Grid service instances have a well-defined life-cycle.
Grid service instances can be created then later destroyed. A client may request the
creation of a Grid service instance by invoking the createService operation on a Grid
service instance that implements a port type that extends the Factory port type, which is
defined by the OGSI.

OGSI provides a mechanism, Service Data, to allow the exposing of a Grid service
instance’s state data to service requestors for query, update and change notification. The
publicly accessible state of a Grid service is declared as part of the service’s GWSDL
definition. This is roughly equivalent to the idea of declaring the attributes that are
possessed by an object. OGSI provides extensible operations for querying, updating,
and subscribing to notification of changes, of a Grid service’s Service Data as that data
evolves over the lifetime of the Grid service.

OGSI requires all Grid service instances to implement the GridService port type. This
port type is analogous to the base “Object class” in many object-oriented programming

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

Evaluation Plan 19

languages, in that it encapsulates the base behavior of a Grid service instance. The
GridService port type allow the querying and updating of Service Data set of the Grid
service instance and managing the termination of the instance.

A.5 Business Transaction Protocol (BTP)
The Business Transaction Protocol (BTP) [3] is an OASIS specification designed to
provide reliable coordination of parties engaged in a business-level transaction.
Ratified to committee specification level in May 2002, BTP has the backing of several
large IT organizations including HP, BEA, Sun, and Oracle as well as a number of small
and medium-sized vendors.

BTP provides a common understanding and a way to communicate levels of
participation within transactions and limits on these levels between organizations. The
formal rules are necessary for the distribution of parts of business processes outside the
boundaries of an organization. BTP solves part of the problem for developers of loosely
coupled transactions—the coordination of services/participants to ensure a consistent
termination outcome. Expertise in the design of compensating actions is still required,
but these compensations are local rather than distributed.

BTP uses a two-phase completion protocol for transaction coordination. At termination
time, services participating in a transaction are asked up-front to state their intention
(whether they will proceed with the transaction or whether they are not prepared to do
so), and will later be instructed by the transaction manager to either proceed or not
based on the analysis of all of the collected intentions. In order to satisfy its
requirements, BTP supports two distinct transactions models, which are:

• Atoms: Similar to traditional atomic transactions where all Web services
participating in an Atom are guaranteed to see the same outcome as all of the
other participants: the outcome is atomic.

• Cohesions: Which allow business logic to dictate which combination of
participating services succeed, while permitting the transaction as a whole to
make forward progress – this allows the business transaction to proceed even in
the presence of failures.

Cohesions allow us to pick groups of participating services (known as the confirm set)
that we would eventually like to reach completion: unlike an atom, not all participants
need see the same outcome for the transaction, i.e., atomicity is relaxed.

The BTP transaction coordinator is not as dictatorial as its equivalents in other
transaction management models: the BTP model recognizes the possibility that other
parts of an application might need to influence the decision making process required to
complete a transaction. In addition, BTP supports runtime negotiation of quality of
service characteristics based on the exchange of qualifiers. Qualifiers are the
mechanism which enables the bilateral exchange of protocol “small print” between
participants and coordinators. In essence, each BTP message allows the sender to tag
qualifiers that describe such things as, “I will be prepared for the next ten minutes, and
after that I will unilaterally cancel” and “You must be available for at least the next 24
hours to participate in this transaction.” Qualifiers are a valuable mechanism in Web
services transactions because in a loosely coupled environment, it is extremely useful to
know that the party you’re communicating with will only be around for so long, or to be
able to specify that your party won’t hang around while others procrastinate.

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

Evaluation Plan 20

A.6 Web Services Transaction (WS-Transaction) and Web Services
Coordination (WS-Coordination)

The purpose of the combined Web Services Transaction (WS-Transaction) [4] and Web
Services Coordination (WS-Coordination) [5] specifications is to provide a standard for
conducting transactions over Web services. The WS-Transaction and WS-Coordination
specifications were published by IBM, Microsoft and BEA in August 2002, and are
intended to be a competitor to the Business Transaction Protocol (BTP) [3]
specification.

The current WS-Transaction and WS-Coordination specifications are lacking details
that would be required to construct interoperable implementation, which are based
purely on these specifications. The authors of these specifications have stated that it is
their intention to submit them to a standards body such as W3C or OASIS.

The WS-Coordination specification describes an extensible framework for providing
protocols that coordinate the actions of distributed applications. The framework consists
of two simple message-oriented request-response protocols for Activation and
Registration. Being message-oriented the request and response are separated into two
one-way invocations.

The Activation protocol specifies how an application can request a coordination context
from an activation service, for a specified coordination type. The returned coordination
context will contain, at least, a unique identifier for the context, the coordination type,
and the endpoint address of the registration service for that context. This coordination
context can be passed between applications so allowing other application to register
with the registration service for the context.

The Registration protocol specifies how an application can request that a registration
service includes the application as a participant in the protocol associated with the
context. As part of the registration protocol the application sends to the registration
service its participant endpoint address, in response the registration service responds
with the context’s protocol coordinator’s endpoint address.

Building on WS-Coordination, the WS-Transaction specification describes two
coordination types Atomic Transactions and Business Activities. Associated with the
Atomic Transaction coordination type are five simple message-oriented protocols for
Completion, Completion with Acknowledgement, Phase Zero, Two-Phase Commit and
Outcome Notification. Associated with the Business Activity coordination type are two
simple message-oriented protocols for Business Agreement and Business Agreement
with Complete.

The Atomic Transaction protocols provide support for standard all-or-nothing ACID
transactions. Through the Completion and Completion with Acknowledgement protocols
participants can request the terminations, commit or abort, of a transaction. If “with
acknowledgement” the participant must acknowledge receipt of the final outcome
before the corresponding coordinator can safely forget the transaction. The final
outcome of a transaction can also be requested using the Outcome Notification protocol.
If a participant wishes to participate in the transaction as a resource the Phase Zero and
Two-Phase Commit protocols are available.

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

Evaluation Plan 21

The Business Activity protocols provide support for handling long-lived activities and
the desire to apply business logic to handle business exceptions. The protocols allow a
coordinator to control a participant within a business activity, for example, the
coordinator can request that the activity abandon its work in some appropriate way, or
after completion the coordinator can request compensation be performed.

A.7 Web Services Composite Application Framework (WS-CAF)
Web Services Composite Application Framework (WS-CAF) [23] is a set of three
related specifications aimed at solving problems that arise when combining multiple
Web services, also known as “composite applications.” Composite applications require
specific support services, such as the ability to share common information, or context,
and the ability for the success or failure of individual Web services to be tied to the
success or failure of the larger unit of work comprising the set Web services. The Web
Services Composite Application Framework specifications were published by Arjuna
Technologies, Fujitsu, IONA Technologies, Oracle, and Sun Microsystems in July
2003.

WS-CAF is aimed at providing the common information or shared context of a
composite Web services application. This can include such items as security credentials,
so that someone can log in once and invoke multiple Web services without having to
log in again; a database connection over which to perform multiple operations from
multiple Web services without having to establish a new connection each time, or a
device address to which to post results from multiple Web services without having to
search for the device’s network address each time.

Another aim of WS-CAF is to also allow the mapping of the success and failure of
individual Web services into success or failure of the web service application as a
whole. This is achieved by means of the ability to group multiple Web services into a
single transaction with various, configurable properties to ensure that composite
operations reliably produce a known state regardless of the failure of one or more Web
services to successfully complete. Furthermore, the specifications support multiple
transaction protocols, including long running actions with compensations and
asynchronous business process flows.

The three specifications that comprise the WS-CAF are:

• Web Services Context (WS-CTX) [24], which models a Web services context
data structure as a Web resource, accessible via standard URLs.

• Web Services Coordination Framework (WS-CF) [25], which defines a software
agent called a coordinator that takes responsibility for context management and
augmentation. Web services in a composite application register with a
coordinator to ensure message results are communicated.

• Web Services Transaction Management (WS-TXM) [26], which defines three
distinct transaction protocols that can be plugged into the coordination
framework for interoperability across existing transaction managers, long
running compensations, and business process automations.

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

Evaluation Plan 22

The WS-CAF specification states that the overall aim of the combination of the parts of
WS-CAF is to support various transaction processing models and architectures. It also
states that the individual parts of WS-CAF are designed to complement Web services
orchestration and choreography technologies such as BPEL4WS, WSCI and WS-
Choreography and work with existing Web services specifications such as WS-Security
and WS-Reliability. The three specifications define incremental layers of functionality
that can be implemented and used separately by these and other specifications
separately or together. The emphasis of WS-CAF is to define supporting services
required by Web services used in combination.

A.7.1 WS-Context (WX-CTX)
WS-Context provides the ability to scope arbitrary units of distributed work by sharing
a common context. This is a requirement in a variety of distributed applications, such as
choreography and business-to-business interactions. Scoping makes it possible for Web
services participants to be able to determine unambiguously whether or not they are in
the same composite application, and what it means to share context. Scopes can be
nested to arbitrary levels to better delineate application work.

The shared context allows a series of operations to share a common outcome. The Web
services participating in the composite application maintain the context information
shared between multiple participants in a Web services interaction.

The context is modelled as a Web resource and is accessible via a URI. Web services
are identified as participants in the activity by including the context URI in the SOAP
header, as shown in the following example:

<env:Envelope xmlns:env="http://www.w3.org/2002/12/soap-envelope">
 <env:Header>
 <n:Composite xmlns:n="http://example.org/CompositeApplication">
 <n:Context>http://example.org/contextURI</n:Context>
 </n:Composite>
 </env:Header>
 <env:Body>
 <m:Message xmlns:m="http://example.org/MessageSchema">
 ...
 </m:Message>
 </env:Body>
</env:Envelope>

Web services can also choose to join a composite application upon receipt of a SOAP
message containing the context URI in the header, or, optionally, containing the context
itself within the body of the SOAP message. In this way the context service supports
passing the context by reference (a URI in the header) or by value (within the SOAP
body).

A Context Service is modelled as a Web service that can be co-located with the
participants or executed as a separate service. All Web services referencing the same
context URI, or accepting the same context in a SOAP message, are considered part of
the same composite application. An implementation may permit the Web services to
manage the context themselves, or use a separate service to manage the context.

The context contains information, including a unique context identifier (URI), the URI
of the initial requester, the URI of the ultimate provider, optional URIs of each

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

Evaluation Plan 23

additional Web service within the scope of the composite application, optional security
information, and a status result for each Web service in the composite application.

A.7.2 WS-CoordinationFramework (WS-CF)
In WS-CoordinationFramework coordination is the act of one agent (the coordinator)
disseminating information to a number of participants to guarantee that all participants
obtain a specific message. A coordinator can accept the responsibility, for example, of
notifying all participants in an activity of a common outcome. Coordination is a
fundamental requirement in distributed systems that many applications use either
explicitly or implicitly, e.g., workflow, atomic transactions, caching and replication,
security, auctioning, and business-to-business activities. Coordination propagates
additional information (the coordination context) to the participants.

The WS-CF allows the management and coordination in a Web services interaction of a
number of activities related to an overall application. It builds on the Web Services
Context Service specification and provides a coordination service that plugs into WS-
Context. In particular WS-CF:

• Defines demarcation points which specify the start and end points of coordinated
activities; this is done automatically by invoking an Activity;

• Defines demarcation points where coordination of participants occurs (i.e., at
which points the appropriate SOAP messages are sent to participants);

• Registers participants for the activities that are associated with the application;

• Propagates coordination-specific information across the network by enhancing
the default context structure provided by WS-CTX;

The main components involved in using and defining the WS-CF are:

• A Coordinator: Provides an interface for the registration of participants (such as
activities) triggered at coordination points. The coordinator is responsible for
communicating the outcome of the activity to the list of registered activities.
Importantly, coordination is not restricted to the end of an activity: an activity
can execute (different) coordination protocols at arbitrary points during its
lifetime. Coordination extends the notion of an activity to represent a defined set
of tasks with a set of related coordination actions;

• A Participant: The operation or operations that are performed as part of
coordination sequence processing

• A Coordination Service: Defines the behavior for a specific coordination model.
The Coordination Service provides a processing pattern that is used for outcome
processing. For example, an ACID transaction service is one implementation of
a Coordination Service that provides a two-phase protocol definition whose
coordination sequence processing includes Prepare, Commit and Rollback.
Other examples of Coordination Service implementations include extended
transaction patterns such as Sagas, Collaborations, Nested or Real-Time
transactions and non-transactional patterns such as Cohesions and Correlations.
Coordination can also be used to group related non-transactional activities.
Multiple Coordination Service implementations may co-exist within the same
application and processing domain. WS-CF does not specify how a Coordination

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

Evaluation Plan 24

Service is implemented. For example, a given implementation may support
multiple coordination protocols as in [30].

A.7.3 WS-Transaction Management (WS-TXM)
Generally structuring mechanisms available within traditional transaction systems are
sequential and concurrent composition of transactions. These mechanisms are sufficient
if an application function can be represented as a single top-level transaction.
Frequently with Web services this is not the case. Top-level transactions are most
suitably viewed as “short-lived” entities, performing stable state changes to the system;
they are less well suited for structuring “long-lived” application functions, ones that
could running for minutes, hours, days or even longer. Long-lived top-level transactions
implemented using traditional systems may reduce the concurrency in the system to an
unacceptable level by holding on to locks for a long time; further, if such a transaction
rolls back, much valuable work already performed could be undone. Web services,
because of their inherently unpredictable invocation patterns do not fit well with
traditional ACID systems.

There are three transaction protocols defined by WS-TXM:

• ACID transaction: a traditional ACID transaction (AT) designed for
interoperability across existing transaction infrastructures.

• Long running action: an activity, or group of activities, which does not
necessarily possess the guaranteed ACID properties. A long running action
(LRA) still has the “all or nothing” atomic effect, i.e., failure should not result in
partial work. Participants within an LRA may use forward (compensation) or
backward error recovery to ensure atomicity. Isolation is also considered a back-
end implementation responsibility.

• Business process transaction: an activity, or group of activities, that is
responsible for performing some application specific work. A business process
(BP) may be structured as a collection of atomic transactions or long running
actions depending upon the application requirements.

The long running action model (LRA) is designed specifically for those business
interactions that occur over a long duration. Within this model, an activity reflects
business interactions: all work performed within the scope of an application is required
to be compensatable. Therefore, an application’s work is either performed successfully
or undone. How individual Web services perform their work and ensure it can be
undone if compensation is required, are implementation choices and not exposed to the
LRA model. The LRA model simply defines the triggers for compensation actions and
the conditions under which those triggers are executed.

In the LRA model, each application is bound to the scope of a compensation interaction.
For example, when a user reserves a seat on a flight, the airline reservation centre may
take an optimistic approach and actually book the seat and debit the users account,
relying on the fact that most of their customers who reserve seats later book them; the
compensation action for this activity would obviously be to un-book the seat and credit
the user’s account. Work performed within the scope of a nested LRA must remain
compensatable until an enclosing service informs the individual service(s) that it is no
longer required.

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

Evaluation Plan 25

In the business process transaction model (BP model) all parties involved in a business
process reside within business domains, which may themselves use business processes
to perform work. Business process transactions are responsible for managing
interactions between these domains. A business process (business-to-business
interaction) is split into business tasks and each task executes within a specific business
domain. A business domain may itself be subdivided into other business domains
(business processes) in a recursive manner.

Each domain may represent a different transaction model if such a federation of models
is more appropriate to the activity. Each business task (which may be modelled as a
scope) may provide implementation specific counter-effects in the event that the
enclosing scope must cancel. In addition, periodically the controlling application may
request that all of the business domains checkpoint their state such that they can either
be consistently rolled back to that checkpoint by the application, or restarted from the
checkpoint in the event of a failure.

An individual task may require multiple services to work. Each task is assumed to be a
compensatable unit of work. However, as with the LRA model described earlier, how
compensation is provided is an implementation choice for the task.

A.8 Business Process Execution Language for Web Services
(BPEL4WS)

The purpose of Business Process Execution Language for Web Service (BPEL4WS) [6]
is to provide a standard for specifying business process behaviour and business process
interactions, for applications composed from Web services. The BPEL4WS 1.0
specification was published by IBM, Microsoft and BEA in July 2002, and is intended
to supersede the XLANG [9] and WSFL [8] specification. The BPEL4WS 1.1 was
published May 2003, and was used as input to an OASIS standardization working
group.

The BPEL4WS integration model is that business partners interact through peer-level
conversations, using both synchronous and asynchronous messages. These
conversations are carried out between the partners using specified sets of Web services.
The conversations are coordinated within a partner by a business process.

From the business process perspective, the services provided by other partners and the
services expected by partners are specified as a set of partner links. The partner links, an
extension of WSDL [11], are used to model the peer-to-peer partner relationships.
Partner links define the shape of a relationship with a partner by defining the messages
and interfaces (WSDL port types) used in the interactions in both directions.

Associated with each business process instance is a state, this state is comprised of a set
of variables that contain messages. Variables can be used as the destination of received
message or invocation results or the source of a reply message or invocation parameters.
The contents of a variable can be also be accessed by certain basic activities, such as
assign and switch.

The behaviour of a business process is specified using a set of activities. The execution
of theses activities is structured using certain “structured activities”: sequence, switch,
pick, while, flow and scope.

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

Evaluation Plan 26

• sequence activity: this activity contains one or more activities that are executed
sequentially;

• switch activity: this activity contains an ordered list of one or more conditions
and activity pairs. The conditions are considered in order and the first condition
that evaluates to true has its associated activity executed. In the case where no
condition holds true a default “otherwise activity” can be specified;

• while activity: this activity repeatedly executes an activity while its condition is
true.

• pick activity: this activity contains an ordered list of one or more event and
activity pairs. It awaits the occurrence of these events, and then executes the
associated activity. Only one activity will be executed, even if multiple
applicable events occur. The events which can be monitored are either “message
events” or “alarm events”.

• flow activity: this activity provides concurrent execution the set of contained
activities. These activities, and their sub-activities, can be “linked” to form
“must occur before” relationships between activities.

• scope activity: this activity allows the contained activity to be associated with its
own fault handlers and compensation handler.

To support communication with external Web services, three communication activities
are provided: receive, reply, invoke.

• receive activity: this activity is used to wait for a particular message type from a
particular partner, and place the contents of the message into a container. A
receive activity can be flagged to create a process instance.

• reply activity: the activity is used to send a response to a request previously
accepted through a receive activity, the contents of the message being obtained
from a container.

• invoke activity: this activity can be used to invoke a service (either synchronous
or asynchronous) provided by a partner. The request message will be obtained
from a container, and if the invoke activity is synchronous, the response will be
stored in a container.

Other activities include assign, wait and empty, and error handling activities: throw,
terminate and compensate.

• assign activity: the activity can be used to assign (parts of) a message contained
within one container to an other container.

• wait activity: the activity is used to introduce delays for a certain period of time
or until a certain deadline is reached.

• empty activity: the activity can be used to introduce an activity that “does
nothing.” This activity can be useful within compensation handlers that are not
required to perform any changes.

• throw activity: the activity is used when a business process needs to signal an
internal fault explicitly.

• terminate activity: the activity can be used to immediately abandon all execution
within the current business process instance.

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

Evaluation Plan 27

• compensate activity: the activity can be used to cause the initiation of
compensation on a scope that has already completed its execution normally.

BPEL4WS does not assume that each business process instance or service instance has
a distinct “endpoint,” or that interactions are based on a sophisticated transport
infrastructure that can identify the involved participants, instead it provides support for
“message correlation.” Message correlation enables message contents to be examined to
identify involved business process, even over multiple conversations. If interactions are
based on a sophisticated message transport, message correlation may not be required.

A.9 Web Services Choreography Interface (WSCI)
The Web Service Choreography Interface (WSCI) [7] is an XML-based interface
description language that describes the flow of messages exchanged by a web service
participating in choreographed interactions with other services. The WSCI specification
was authored by BEA Systems, Intalio, SAP AG and Sun Microsystems.

WSCI describes the observable behaviour of a Web service, but does not address the
definition and the implementation of the internal process. WSCI describes behaviour in
terms of temporal and logical dependencies among the exchanged messages, sequencing
rules, correlations, exception handling, and transactions.

WSCI's interface description language, which is based on XML, is used to capture the
modelling concepts of: interfaces, activities and choreographs of activities, processes
and units of reuse, properties, context, message correlation, exceptions, transactions and
compensation activities, and global model.

• Interfaces: The behaviour of a Web service is described as processes that are
contained within the interface. A Web service may expose multiple interfaces
for supporting multiple scenarios.

• Activities and choreographs of activities: The behaviour of the processes of
interfaces is described in terms of choreographed activities. Activities can be
atomic or complex. Atomic activities represent basic units of behaviour, such as
sending and receiving messages. Complex activities are recursively composed
from other activities. Complex activities support specific kinds of activity
choreograph, such as: sequential execution, parallel execution, looping and
conditional execution.

• Processes and units of reuse: The named units of behaviour in WSCI are
processes, and are described by activities. Process can be reused, by referencing
their names.

• Properties: References to values within the interface definition are modelled by
properties. They are the equivalent of variables in imperative programming
languages.

• Context: Scopes containing activities are modelled by contexts. They manage
such thing as exception handling, and property definitions.

• Message correlation: To model the interrelationship between conversations
WSCI has introduced message correlation. Different conversations can be
distinguished by correlation instances, which are a set of properties' values.

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

Evaluation Plan 28

• Exceptions: To model exceptional behaviour WSCI supports the definition of
sets of activities that will be executed in response to particular exceptional
behaviour.

• Transactions and compensation activities: WSCI contexts can be associated with
a transaction. WSCI supports two models of transactional behaviour, atomic and
open-nested. Atomic transactions have the standard ACID transaction properties.
Open-nested transactions are composed of other transactions, which can be
themselves atomic or open-nested transactions. The rollback of open-nested
transactions is achieved by executing compensation activities.

• Global model: WSCI also allows modelling a multi-participant view of the
overall message exchange by means of a global model. A global model is
described by a collection of interfaces of the participant services, and a
collection of links between the operations of the participant services.

A.10 Web Services Flow Language (WSFL)
The Web Services Flow Language (WSFL) [8] is an XML language for the description
of Web services compositions. The WSFL 1.0 specification was published by IBM in
May 2001, and has how been superseded by the BPEL4WS specification [6].

WSFL is intended to support two approaches to modelling Web service composition:
Flow Models and Global Models. A Flow Model of composition is based on describing
how to use the functionality provided by a collection of Web services. WSFL models
these compositions by specified the flow of control and data between Web services. A
Global Model of composition is based on describing how a collection of Web services
interacts. The interactions are modelled as links between endpoints of the Web services’
interfaces, each link corresponding to the interaction of one Web service with an
operation of another Web service’s interface. Both Flow Models and Global Models
support recursive composition, where Web service compositions can itself be provided
as a Web service.

The WSFL specification describes the concepts of its models using a metamodel. The
metamodel describes the entities that make up the models, and their interrelationships.

A.11 Microsoft’s XLANG
The purpose of Microsoft’s XLANG specification [9] is to model the message exchange
behaviour among Web services, and is expected to serve as the basis for an automated
protocol engines that can track the state of process instances and help enforce protocol
correctness in message flows. The XLANG specification was published by Microsoft in
2001 and is widely deployed as part of the BizTalk orchestration server, but has how
been superseded by the BPEL4WS specification [6].

The goal of XLANG is to make it possible to formally specify business processes as
stateful long-running interactions. The specific of such business processes are done in
terms of the following:

• Sequential and parallel control flow constructs.

• Long running transactions with compensation.

• Custom correlation of messages.

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

Evaluation Plan 29

• Flexible handling of internal and external exceptions.

• Modular behaviour description.

• Dynamic service referral.

• Multi-role contracts.

The XLANG approach to service description is to extend WSDL [11] service
descriptions with extension elements that describe the behavioural aspects of the
service. An example of such a behavioural description is:
<wsdl:service name="TransferService">
 . . .
 <xlang:behaviour xmlns:xlang="http://schemas.microsoft.com/biztalk/xlang/">
 <xlang:body>
 <xlang:sequence>
 <xlang:action operation="Debit" port="BankAccountA" activation="true"/>
 <xlang:action operation="Credit" port="BankAccountB"/>
 </xlang:sequence>
 </xlang:body>
 </xlang:behavior>
</wsdl:service>

A.12 Web Services Conversation Language (WSCL)
The purpose of Web Service Conversation Language (WSCL) [10] is to provide a
standard for specifying business level conversations. WSCL provides an XML schema
for specifying business level conversations that take place at a single Web service. The
WSCL specification was published as a W3C note by Hewlett-Packard in March 2002.

The WSCL notion of a conversation is a series of message exchanged between a
service-consumer and a service-provider. The WSCL specification models a
conversation as a finite state machine where state changes are triggered by interactions.
An interaction is the exchange of one or two documents between a service-consumer
and a service-provider. The WSCL model supports five types of interactions Send,
Receive, SendReceive, ReceiveSend and Empty (the first four of which maps to the
WSDL notions of: one-way, notification, send-response and requested-response).

A.13 Web Services Description Language (WSDL)
The purpose of the Web Services Description Language (WSDL) [11] is to address the
need to describe network services. In WSDL, network service descriptions are
contained in XML documents, which defines both the abstract and concrete entities
required to specify network services in sufficient detail that they can be invoked, and
related to other network service.

The entities, which are encoded as XML elements within a WSDL document, are:

• types: contain data type definitions using some type system, normally XML
Schema.

• messages: are abstract definition of the content of messages being
communicated.

• port types: are abstract definition of a set of operations supported by one or more
endpoints.

• bindings: contains the specification of concrete protocol and data format to
communicate.

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

Evaluation Plan 30

• services: contain the specification of a collection of endpoints.

An illustration of the overall structure of a WSDL document, is given below:

<?xml version="1.0">

<wsdl:definitions name="..." targetNamespace="..." ...>
 <wsdl:types>...</wsdl:types> ?
 <wsdl:message name="...">...</wsdl:message> *
 <wsdl:portType name="...">...</wsdl:portType> *
 <wsdl:binding name="..." type="...">...</wsdl:binding> *
 <wsdl:service name="...">...</wsdl:service> *
</wsdl:definitions>

In the rest of this section the WSDL document elements, and their sub-elements, will be
described in more detail.

The purpose of the types elements within a WSDL document is to allow the definitions
of data types that can be included within messages. This is usually done using an XML
Schema, though it should be noted that eventual wire format messages might not be in
XML. The optional types element may be augmented by importing existing schemas
into the WSDL document. An example of a WSDL document’s types element is:

<wsdl:types>
 <xsd:scheme targetNamespace="http://example.com/job-control">
 <xsd:complexType name="NameValuePairType">
 <xsd:sequence>
 <xsd:element name="Name" type="xsd:string"/>
 <xsd:element name="Value" type="xsd:string"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:scheme>
</wsdl:types>

Message elements are abstract definition of messages, which are exchanged between
endpoints. Messages consist of zero or more logical parts, which are analogous to
named and typed parameters. Each part is associated with a type from some type
system, possibly defined in the types elements. An example of a WSDL document’s
message element is:

<wsdl:message>
 <wsdl:part name="AccountNumber" type="tns:AccountNumberType"/>
 <wsdl:part name="Amount" type="xsd:integer"/>
</wsdl:message>

The purpose of the port type elements within a WSDL document is to allow the
definition of abstract endpoints. The abstract endpoint definition is in terms of a set of
operation elements. Each operation elements defines it name, and the message types
involved in the operation. Depending on the messages involved in the operation four
interaction models are supported:

• One-way: the endpoint receives a message.

• Request-response: the endpoint receives a message, and sends a correlated
message.

• Solicit-response: the endpoint sends a message, and receives a correlated
message.

• Notification: The endpoint sends a message.

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

Evaluation Plan 31

Examples of port type elements, which are describing respectively: one-way, request-
response, solicit-response and notification, are given below:

<wsdl:portType name="JobControl">
 <wsdl:operation name="Shutdown">
 <wsdl:input message="tns:ShutdownRequest"/>
 </wsdl:operation>

 <wsdl:operation name="GetStatus">
 <wsdl:input message="tns:GetStatusRequest"/>
 <wsdl:output message="tns:GetStatusResponse"/>
 <wsdl:fault name="unknownService" message="tns:ErrorResponse"/>
 </wsdl:operation>

 <wsdl:operation name="AreYouAlive">
 <wsdl:output message="tns:AreYouAliveRequest"/>
 <wsdl:input message="tns:AreYouAliveResponse"/>
 <wsdl:fault name="unknownClient" message="tns:ErrorResponse"/>
 </wsdl:operation>

 <wsdl:operation name="Refresh">
 <wsdl:output message="tns:RefreshRequest"/>
 </wsdl:operation>
</wsdl:portType>

The purpose of the bindings elements are to define, for a particular port type, protocol
details for operations, and the message format for associated messages. The bindings
elements are extensible in that elements for other schemas can be introduced within the
bindings. Specifications exist for bindings for SOAP, HTTP and MIME. Through these
extensions the specifics of the protocol and message format can be specified for that
particular from of binding. In the example below the SOAP binding extensions have
been used:

<wsdl:binding name="JobControlSOAPBinding" type="tns:JobControl">
 <soap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http"/>
 <wsdl:operation name="GetStatus">
 <soap:operation soapAction=""/>
 <wsdl:input>
 <soap:body use="encoded" namespace="http://example.com/job-control"
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
 </wsdl:input>
 <wsdl:output>
 <soap:body use="encoded" namespace="http://example.com/job-control"
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
 </wsdl:output>
 </wsdl:operation>

 ...
</wsdl:binding>

In this example the protocol transport has been specified as HTTP, and that style of
messages is RPC (which embeds messages within an element with the same name as the
intended receiving method, as opposed to document which does not) and the messages
will be encoded using SOAP encoding (which uses the SOAP schema as opposed to
literal encoding where other arbitrary schemas are used).

The purpose of the service element is to define a set of network endpoints. Each
network endpoint is defined by a ports element. In the example bellow, a service is
specified containing a single network endpoint that is accessible at the specified URL,
and is associated with a SOAP binding.

<wsdl:service name="JobControlService">
 <wsdl:port name="JobControl" binding="tns:JobControlSOAPBinding">
 <soap:address location="http://ws.acme.com/axis/services/JobControlService"/>

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

Evaluation Plan 32

 </wsdl:port>
</wsdl:service>

A.14 Web Service Security (WS-Security)
The Web Service Security (WS-Security) [12] provides a framework to enable
applications to construct secure SOAP message exchanges. The WS-Security 1.0
specification was published by IBM, Microsoft and VeriSign in April 2001.

The WS-Security specification describes enhancements to SOAP to allow message
integrity and message confidentiality to be implemented. The WS-Security
enhancements are aimed to addressing two types of security threat: 1) messages being
modified or read by antagonists or 2) an antagonist sending messages to a service that,
while well-formed, lack appropriate security claims to warrant processing.

The WS-Security approach is to define the basic structure of a SOAP header for
attaching security information to a SOAP message, and specifying of how encrypted
information is encoded in a SOAP message. The types of security information that can
be attached to SOAP message in a WS-Security SOAP header are:

• User name and password information (UsernameToken element)

• Binary security tokens, for example, X.509 certificates and Kerberos tickets
(BinarySecurityToken element)

• References to security tokens what reside somewhere else and need to be
“pulled” by the receiving application (SecurityTokenReference element)

• Key information, such as X.509 certificates (KeyInfo element)

• Message signature (Signature element)

A.15 Web Services Reliable Messaging Protocol (WS-
ReliableMessaging)

The Web Services Reliable Messaging Protocol (WS-ReliableMessaging) [22] describes
a protocol to allow messages to be delivered reliably between two distributed
applications in the presence of software component, system and network failures. The
Web Services Reliable Messaging Protocol specification was published by BEA, IBM,
Microsoft and TIBCO Software in March 2003.

The WS-ReliableMessaging protocol guarantees that messages sent by the initial sender
will be delivered to the ultimate receiver. This guarantee is specified by delivery
assurances, the four basic delivery assurances that an endpoint can provide are:

• AtMostOnce: Messages will be delivered at most once without duplication or an
error will be raised on at least one endpoint. It is possible that some messages in
a sequence may not be delivered.

• AtLeastOnce: Every message sent will be delivered or an error will be raised on
at least one endpoint. Some messages may be delivered more than once.

• ExactlyOnce: Every message sent will be delivered without duplication or an
error will be raised on at least one endpoint.

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

Evaluation Plan 33

• InOrder: Messages will be delivered in the order that they were sent. This
requires that the sequence observed by the ultimate receiver be non-decreasing,
but says nothing about duplications or omissions.

The ExactlyOnce delivery assurance is the logical "and" of the AtMostOnce and
AtLeaseOnce delivery assurances. The InOrder delivery assurance may be combined
with any of the other delivery assurances.

To achieve the required delivery assurance guarantees, the WS-ReliableMessaging
protocol adds to each message’s header an identifier (in the form of a URI), a sequence
number and a flag to indicate if this is the last message associated with the identifier.
The messages header can also contains an acknowledgment request, which causes the
receiver to send back a sequence acknowledgment that contains the ranges of sequences
numbers of the messages that have been successfully received (e.g. 1...5, 7, 9…20).

Along with the delivery assurance, WS-ReliableMessaging also supports the other
policies that can be associated a sequence (the name used in WS-ReliableMessaging to
refer to a set of messages with have the same identifier), these policies include:
sequence expiration, inactivity timeout and retransmission interval.

The WS-ReliableMessaging protocol also defines a number of types of sequence fault,
which can be used to propagate details of faults that occur during the protocol, such as:
sequence terminated, unknown sequence, invalid acknowledgment, message number
rollover, last message number exceeded and sequence refused.

A.16 Universal Description, Discovery and Integration (UDDI)
The Universal Description, Discovery and Integration (UDDI) [13] project’s purpose is
to provide standardized methods of publishing and discovering information about Web
services. The UDDI project is aiming to specify an open framework for describing
service, discovering businesses, and integrate business services.

Conceptually, a business can register three types of information in a UDDI registry:

• Basic contact information and unique identifiers about the company.

• Categorisation of the Web services provided by the company.

• Behavioural description of the Web services provided by the company.

The UDDI Business Registry (UBR), also know as the “Public Cloud” has been
deployed. The UBR is a decentralized registry in which the content is replicated over on
all the nodes that operate the UBR.

The UDDI project has specified a number of XML schemas and programming APIs to
allow publishing and discovery of information about business. The UDDI APIs are
based on five primary UDDI data structures types: businessEntity, publisherAssertion,
businessService, bindingTemplate and tModel.

• businessEntity: contains the business’s basic information, including contact
information categorisation, description and identifiers.

• publisherAssertion: is used to indicate a relationships between two businesses
(businessEntitys). This relationship is only made public if both businesses
endorse the relationship.

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

Evaluation Plan 34

• businessService: represent services provided by the business, both Web service
and manual services. A businessService can be associated with one or more
businessEntitys, and a businessEntity can contains one or more businessServices.

• bindingTemplate: contains pointers to the technical descriptions and the access
endpoint of a service. A businessService can contain one or more
bindingTemplates.

• tModel: contains the abstract description of a particular specification or
behaviour to which the service adheres. A bindingTemplate can contain one or
more tModels.

A.17 OMG Interface Definition Language (OMG IDL)
The OMG Interface Definition Language (OMG IDL) [14] is used to describe interfaces
of CORBA objects. These interface definitions specify the operations the objects is
equipped to execute, the input and output parameters required, and any exceptions that
may be thrown. An interface can be derived from another interface, which is called a
base interface of the derived interface. The derived interface supports all of the
operations of the base interface in addition to its own operations. CORBA IDL allows
interface definitions to be grouped into a module definition. An example of CORBA
IDL is given below:
module CallbackTest
{
 interface PingPong;

 typedef sequence<PingPong> PingPongSeq;

 interface PingPong
 {
 boolean oper(in long level, in PingPongSeq objects);
 };
};

A.18 CORBA Interface Repository (CORBA IR)
The CORBA Interface Repository (CORBA IR) [15] is the component of the ORB that
provides persistent storage of interface definitions; it manages and provides access to a
collection of object definitions specified in OMG IDL. Interface definitions are
maintained in the Interface Repository as a set of objects that are accessible through a
set of OMG IDL specified interface definitions. An interface definition contains a
description of the operations it supports, including the types of the parameters,
exceptions it may raise, and context information it may use.

A.19 JBoss Clustering
JBoss is an open-source J2EE application server, it currently (version 3.2.2) provides
full clustering support [28][29] for stateless session beans, stateful session beans, entity
beans and JNDI, and partial support for JMS and message driven beans. Replication of
HTTP sessions for web applications is also available.

A cluster of JBoss server instances (nodes) is split into partitions, where a node can be a
participant of multiple partitions and can join and leave partitions dynamically. The
service of a particular EJB or servlet is replicated across a partition. A client, if accesses
the service via RMI, can cope with failure of nodes by using a smart proxy that redirects
failed invocation to other members of the partition. For HTTP clients a dispatcher can
be used to manage failover between replicas.

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

Evaluation Plan 35

Each type of service (i.e. stateful session beans, entity beans, …) has its own
mechanisms to maintain state constituency between invocations. For stateful session
beans their state is multicast after each invocation to the replicas, where as for entity
beans their state is read from the database before each invocation and written back to
the database after each invocation. The replication mechanisms used by JBoss can cause
incorrect behaviour as well as serious performance degradation in certain
circumstances.

JBoss supports the deployment of replicas of software complements across the cluster,
this mechanism is called Farming. Farming allows a software component to be
deployed on one node, and to be automatically propagated to other nodes in the cluster.

A.20 Microsoft Cluster Server (MSCS)
Microsoft Cluster Server (MSCS)[30] clusters aim to host applications that use failover
to achieve high availability. When Microsoft Cluster Server (MSCS) is used in
conjunction with Network Load Balancing (NLB) provide geographically dispersed
server clusters, but at present this is only suitable for disaster recovery.

MSCS clusters allow that applications and services running on a server cluster to be
exposed to clients as virtual servers. To clients, connecting to an application or service
running as a clustered virtual server appears to be the same process as connecting to a
single, physical server. In fact, any node in the cluster can host the connection to a
virtual server. The client application will not know which node is actually hosting the
virtual server.

MSCS architecture is based on a shared-nothing model. In the shared-nothing model,
each server owns and manages its local devices. Devices common to the cluster, such as
a common disk array, are selectively owned and managed by a single server at any
given time.

In MSCS, resources that are related or dependent on each other are associated through
resource groups. Each resource group has an associated cluster-wide policy that
specifies which server the group prefers to run on, and which server the group should
move to in case of a failure. Each group also has a network service name and address to
enable network clients to bind to the services provided by the resource group. In the
event of a failure, resource groups can be failed over or moved as atomic units from the
failed node to another available node in the cluster.

The applications and service that run on top of MSCS can be either cluster-aware or
cluster-unaware. Cluster-aware applications can work within the cluster environment
and support cluster events; also cluster-aware applications can register with the server
cluster to receive status and notification information. If an application and service is
cluster-unaware, this does not mean that it can’t be assigned to resource groups and can
be failed over, but this can only done if application and service is “naturally
failoverable”.

The MSCS clusters are implemented by a set of service itself, which are composed of
several functional units. These include the Node Manager, Failover Manager, Database

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

Evaluation Plan 36

Manager, Global Update Manager, Checkpoint Manager, Log Manager, Event Log
Replication Manager, and the Backup/Restore Manager.

The MSCS products enable server clusters to support the following resources: file and
print shares, physical disks, Microsoft distributed transaction coordinator, internet
information services, message queuing triggers, network addresses and names, generic
services or applications and generic scripts

A.21 IBM’s WebSphere Clustering
IBM’s application server product WebSphere Application Server, Advance Edition [31]
provides support for scalability, load-balancing and failover.

WebSphere supports a mechanism called cloning, is allows for the creation of multiple
copies of an object such as an application server. Cloning involves taking an application
server that you’ve set up, and creating a model based upon that setup. When you have
created a model, you can then create clones of that application server. The resulting
extra clones can improve the performance of the original service and be regarded as
identical to the original service. Clones can be located on different machines to the
original service, this allows continued service in the present of machine failure.

The model which is used to create clones is a logical representation of an application
server, and has the same structure and attributes as a real application server, but it is not
associated with any node.

The uses of clones does place constrains on the application being run, for example, with
WebSphere V3.x, the only way to share a session between clones is to persist the
session to a database.

A.22 BEA’s WebLogic Clustering
BEA’s application server, WebLogic Server [32], allow a cluster of application servers
to appear to its clients as a single server. The cluster mechanism will ensure that
connection requests can be load-balanced across the cluster and that failover can occur
transparently. If a reliable, high-throughput, multicast-capable WAN connection is
available between two or more LANs, the WebLogic Server cluster can be configured to
span these LANs. The clustering within WebLogic Server is achieved by supporting
clustering within individual support systems: Web (Servlets and JSPs), Objects (EJBs
and JNDI), Messaging (JMS) and Database (JDBC).

The WebLogic Server is configurable as to how it provides clustering, for example, it
support for persistence HTTP session states can be achieved by configuring the
WebLogic Server between three options: in-memory replication, file system persistence
or database persistence through JDBC. Each option represents a tradeoff between
persistence durability and performance.

