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Dependencies with other deliverables 
 
This deliverable is a description and evaluation of parts of the ADAPT composition engine 
(deliverable D14, CS Middleware) which is currently at the prototype stage (deliverable due 
on month 29). The deliverable builds upon deliverables D9 (CS Middleware Architecture, due 
on month 5) and D7 (Composition Language, due on month 11). The aspects of the evaluation 
plan that pertain to this module are covered by this deliverable in the form of extensive 
performance measurements. 
As indicated by the reviewers on the first review of the project, we have opted for a format in 
the report that matches scientific papers.  Part of this report has been accepted for publication 
in: C. Pautasso, G. Alonso, JOpera: a Toolkit for Efficient Visual Composition of Web 
Services, International Journal of Electronic Commerce (IJEC). 
 
1 Motivation for the deliverable 
 
Although they may not solve all interoperability problems, Web service technologies show 
great promise in reducing the complexity of integrating heterogeneous software components 
over the Internet. They provide standard protocols for invoking (SOAP [26]), describing 
(WSDL [27]), and discovering services (UDDI [20]) published on the Internet in a platform, 
programming language and vendor independent manner. A most natural evolution of these 
technologies concerns the ability to compose complex Web services from basic ones [5]. 
Especially in E-Business scenarios, the standardization efforts to integrate Web services into 
business processes have produced many proposals [6, 13, 14, 18, 23, 28, 29]. However, none 
of these is yet well established in practice [24], although the Business Process Execution 
Language for Web Services (BPEL4WS [13]) specification seems to be ahead at the moment. 
 
The standardization efforts behind Web services, and the increasing number of aspects that are 
being formalized, open up the possibility of reducing the development cost and complexity of 
large distributed information systems. In particular, a visual approach to Web service 
composition may very well be a suitable complement to such existing XML-based 
composition standards. Using a visual programming language may help to bridge the different 
standards and will certainly help to make Web services much more designer-friendly. In such 
a system, the order of invocations of services, their data exchanges and the necessary failure 
handling behavior could all be specified with a simple visual syntax. However, having a visual 
programming language, such as the ADAPT composition language, for Web service 
composition is not enough. The visual programming environment needs also a set of tools for 
efficient, scalable and reliable execution of such composite applications. 
 
Regarding the efficient and scalable execution of composite Web services, we describe a 
novel architecture for a process support system, in which a flexible container for process 
execution can be tailored to provide different availability guarantees. This is achieved through 
a set of well defined abstractions for storing the state of a process, propagating events and 
executing tasks. By switching between different implementations of these abstractions, 
different quality of service levels can be achieved in terms of both scalability and reliability. 
Within this flexible architecture, we show that replication can be applied to any system 
component to increase the overall system’s throughput. In particular, we focus on parallel 
navigation, as it is an important scalability bottleneck not well understood in practice. Finally, 
we validate our approach with an extensive set of experiments, which systematically compare 
the performance of different system configurations. 
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In this report, we concentrate on the ADAPT Availability Container: in Section 2 we present 
its architecture, describing how the system executes the processes written in the ACL 
language. In Section 3, we list some of the configurations into which the ADAPT container 
can be deployed. To compare them, we conducted a systematic performance evaluation and in 
Section 4 we present the most important results. 
 
2 ADAPT Availability Container 
 
In this section we present the architecture of the ADAPT Availability Container. The main 
purpose of such container is to provide an execution platform for the ADAPT Composition  
Language which can be tailored to different levels of performance. 
The relationship between the ADAPT Visual Development Environment and the Process 
Execution Container is defined as follows. The processes defined in the ACL language are 
created and edited using the development environment. As we will explain in the following 
section, once the processes are complete and ready to be executed, they are compiled into Java 
and the resulting process template plugins are then dynamically loaded into the container for 
execution. Once a new process instance has been started, its execution is managed by the 
container, which may be run independently of the development environment. However, users 
may connect the development environment to an existing container to monitor the activity 
and the progress of their processes. 
 
Before describing in detail the architecture of the ADAPT Container, we would like to give 
some background on how it is possible to execute the description of a process written in ACL 
using the so-called navigation algorithm. 
 
2.1 Process Navigation 
 
Navigation is the procedure whereby the system determines the set of tasks to be executed 
next, given the current state of the process and its control flow graph, specifying the partial 
order of execution of the tasks. To do so, the navigation procedure interprets the information 
of a directed graph, where the nodes represent the tasks and are labeled with their current 
state, and the edges represent control flow dependencies between the tasks. When a state 
change of a task occurs, the algorithm proceeds in two steps. First, in order to determine the 
set of tasks affected by the state change, it follows all outgoing control flow dependencies. 
Then, it evaluates the starting conditions of these tasks to check if they are ready to be started. 
This way, after every task state change it is possible to determine the set of tasks to be started 
next. This approach is very similar to mapping the process description to a set of Event, 
Condition, Action (ECA) rules. State changes of tasks trigger events, which will cause the 
evaluation of the conditions associated with the set of dependent tasks and, when these rules 
fire, the actions required to start the tasks can be carried out. More specifically, during 
navigation the system mainly performs two types of actions. The first type concerns the actual 
task execution, that is packing all the necessary information into a job that can be submitted to 
the scheduler responsible for finding a suitable machine for running the task or the correct 
provider to which a request message should be sent in order to invoke the service. The second 
type groups operations that access or modify the state information of a process. These include, 
for example, copying the data from the parameters of one task to another as specified in the 
data flow of the process, as well as setting metadata values, such as the starting time of a task, 
or accessing the state of a set of tasks to determine whether they have failed. 
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2.1.1 Executing Navigation 
 
In practice, it is not necessary to compile a process description into a generic ECA-like 
representation to be interpreted by the process engine. Instead, to implement our process 
navigation algorithm we build on the idea of mapping the process description to a program 
embodying the specific rules corresponding to the process description, generated using an 
ordinary programming language. This way, we can use the language’s compiler to produce 
executable code which then can be dynamically loaded and linked into the container’s runtime 
environment to be executed. This approach has the potential to provide better performance. 
First of all, the executable code is generated in a standard programming language, in our case 
Java, which then is compiled one more time. This way we can map the process model to 
standard language constructs, which can be efficiently executed.  Moreover, during code 
generation it is possible to analyze the structure of the process and perform optimizations. 
 
In addition to this, the generated program is completely stateless, as it only contains a 
mapping of the process structure. To perform navigation over a particular process instance, the 
program reads its state as input. Therefore, it is possible to perform navigation over many 
instances of the same process using the same program code, which only needs to be loaded 
once. In many existing systems, this clear separation between the state of a process and its 
structure is missing and before each invocation of the navigation procedure both types of 
information need to be loaded from the persistent repository, incurring in unnecessary 
overhead.  
 

 
2.2 Architecture 
 
The core infrastructure necessary to run the processes written in ACL is depicted in Figure 1. 
The ADAPT process execution container includes mechanisms to 1) run the navigation 
algorithm, 2) schedule and 3) dispatch tasks for execution in the correct environment, 4) 
access and modify state information about tasks and processes, and 5) exchange event 
notifications triggering the execution of the navigation algorithm itself. It should be noted that 
our navigation algorithm is independent of the actual implementation of these basic facilities, 
which are described in the rest of this section. 

Figure 1: Architecture of a Distributed Container 
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2.2.1 Navigator 
 
The navigator is the container component responsible for handling incoming process events, 
which are generally triggered by changes in the state of tasks or represent user requests. When 
such events occur, for example when the dispatcher has finished executing a task, the 
navigator runs the algorithm for deciding what task should be executed next. The navigator 
acts as a container for the process plugins, which embody a process specific version of the 
navigation algorithm. Upon receipt of events concerning a particular process, if necessary, the 
navigator dynamically loads the appropriate plugin. 
 
2.2.2 Task Execution Scheduler 
 
This component couples the navigator, generating task execution requests, with the dispatcher, 
which manages the actual task execution. In a distributed container (Figure 1), the scheduler 
receives task execution requests from a number of navigators and forwards them to a set of 
dispatchers. This is a key component concerning the scalability of the system, as its 
throughput limits the rate at which tasks can be executed. 
 
2.2.3 Dispatcher 
 
If the navigator is in charge of deciding what tasks should be started next, the dispatcher is the 
component which actually starts executing the tasks by dispatching them to the appropriate 
execution subsystem. In order to increase the navigator’s throughput, the actual task startup 
operation has been decoupled from the navigation step which triggers it. This way, the 
navigator may asynchronously issue multiple task startup requests to the task execution 
scheduler, which queues and forwards them to one or more dispatcher components. Once the 
dispatcher receives a job it checks what the job’s characteristics are and sends it to a matching 
execution subsystem. The current prototype contains mechanisms to execute jobs containing 
Unix programs, SOAP [26] requests, Java method calls, XML transformations, as well as sub-
process invocations. Once the job’s execution has completed, the dispatcher sends an event 
encapsulating its results to the navigator. [Figure 2 about here.] 
 
2.2.4 State Information Storage 
 
This is the component responsible for storing the state information about the process 
instances. Its design has been influenced by many requirements, such as performance, 
reliability, and portability across different data repositories. The component’s interface 
supports only a simple, key-value based data model, where the key has been structured as the 
following tuple (Process, Task, Instance, Box, Parameter) and is used to 
uniquely identify a certain data Value across the system. The definition of the key reflects 
the structure of the information to be stored: a process is composed of a set of tasks, of which 
there can be many instances. Each process/task instance has multiple parameters which are 
grouped into three boxes (or logical namespaces): system, input, and output. 
 
The main advantages of this approach are summarized in the following arguments. First of all, 
since the information in the key is neutral with respect to the physical locations of the data, it 
becomes possible to transparently move the data to exploit locality and even replicate it 
among different physical repositories to improve its availability. Furthermore, the hierarchical 
nature of the key, suggests a natural data partitioning strategy. Another advantage is that 
changes and extensions to the data model of the processes’ state information do not affect the 
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storage component, since this low level data representation is mostly independent from the 
data and metadata that needs to be stored [1].  
 
Finally, as shown in Figure 2 the data layer can be implemented with a wide variety of 
mechanisms. These range from centralized memory based data structures (such as a hash 
map), to traditional forms of persistent storage (such as network file systems, or relational 
databases), or distributed storage systems (such as Linda-like tuple spaces [4] like TSpaces 
[17] or JavaSpaces [7]) 
 

2.2.5 Event Queues 
 
The various container components communicate by exchanging event notifications managed 
by the event queues. Sources for the events consumed by the navigator components are the 
user interface, other navigators and the dispatchers. Events are sent by the user interface in 
order to start, stop, and, in general, interact with a process instance. The dispatcher notifies the 
navigator with an event every time a task has finished its execution. Navigators also exchange 
events, for example, when a sub-process has completed its execution and navigation over the 
calling process, managed by a different navigator, needs to be triggered. The priority of these 
three classes of events can be adjusted. In a distributed container, event communication is also 
quite important concerning the system’s scalability. We have been experimenting with several 
implementations of the event queues, each having different scalability properties. 
 
First, as a reference, we used a single tuple space server to which all container components 
connect and exchange events by writing and taking tuples. As expected, this centralized event 
queue quickly becomes a bottleneck if all events sent by multiple dispatchers to a set of 
replicated navigators need to go through it. Therefore, in a second design, we chose to use a 
multi-layered approach, by distributing the event queue across all navigator components, with 
the following heuristic in mind: the navigator responsible for handling the incoming events 
should be kept as close as possible to the events themselves. This way, the dispatchers may 
directly send the “task-finished” events to the appropriate navigator. Events which are not sent 
to a specific navigator still go through the central queue, which, in this configuration, needs to 
handle relatively less traffic. For example, user generated process startup requests are queued 
centrally and the corresponding “start-process” events may be retrieved by idle navigators. To 
further reduce the communication overhead, events generated by a navigator which can be 
processed by the same navigator are kept locally and do not need to be sent over the network. 
 
2.3 Parallel Navigation 
 
We chose to parallelize the navigation algorithm based on the observation that each process 
instance is a fully independent entity. In particular, changes to the state of one instance do not 
affect other process instances. Therefore, it is possible to partition the system’s workload at 
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Figure 2: State Information Storage Implementations for the monolithic container 
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 State Task
 Event Information Execution 
 Queues Storage Scheduler Dispatcher Navigator 
 (a) Local Volatile Local Single Single 
(b) Local Persistent Local Single Single 
 (c) Centralized Volatile Remote Multiple Single 
(d) 
 (e) 
 (f) 

Centralized Persistent Remote Multiple Single 
Distributed Volatile Remote Multiple Multiple 
Distributed Persistent Remote Multiple Multiple 
 

 Table 1: Deployment Scenarios 

the granularity level of the process instance and perform navigation on different, independent 
process instances in parallel. As a consequence, the navigation algorithm presented here 
doesn’t need to be changed, since it can be implemented in a thread-safe manner. However, 
the underlying infrastructure needs to support the concurrent execution of the algorithm, 
triggered by events concerning independent process instances.  
Once the system is capable of performing parallel navigation, issues such as load balancing 
and fault tolerance should be dealt with. In our current prototype we support two different 
load balancing strategies: either process instances can be statically partitioned among different 
parallel navigators (load sharing), or events and state information can be dynamically moved 
between different navigators in order to keep the system balanced. Moreover, since each 
navigational step is executed atomically within a transaction, and if the state information can 
be stored remotely and persistently, recovery from failures occurring in the navigator becomes 
completely transparent. In fact, when a dynamic load balancing strategy is used, upon 
detection of the failure, the process instances belonging to a failed navigator can be 
immediately assigned to another one. 
 

 
3 Deployment Scenarios 
 
In this section we present some of the configurations, listed in Table 1, in which the flexible 
architecture of the ADAPT container can be deployed and discuss the main advantages and 
disadvantages regarding their performance. Not only flexibility is an important aspect for 
performance reasons, but also it allows the system to be adapted to different requirements, so 
that it can be deployed into several environments and configurations to match a specific 
workload target. For example, our architecture can be deployed as a light-weight process 
simulation engine, attached to a process development tool. Similarly, it can be embedded into 
standalone Java applications that require process enactment capabilities to coordinate the 
invocation of different components and services. This way, the coordination logic specified as 
a process can be directly executed within the context of the application.  
Alternatively, the ADAPT container can be used as a reliable service orchestration platform 
running inside an application server, which can also scale to handle very large workloads, 
using a cluster based configuration.  
Furthermore, flexibility is one of the basic requirement of an infrastructure capable of 
exhibiting autonomic behavior. To this end, it is important that the system can be reconfigured 
dynamically following the decisions of an autonomic system controller, which monitors the 
current workload conditions and determines the optimal system configuration [3]. 
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The simplest configuration (a) is a so-called monolithic container, where one navigator and 
one dispatcher run on the same machine. The state information storage, the event queues and 
the task execution services are implemented using the appropriate main memory data 
structures. Since all data is kept in main memory, this configuration trades recoverability from 
failures with very fast access to the state information. Given its centralized nature, such an 
architecture does not scale well with large workloads. In addition to the ease of deployment, 
its main benefit lies in its very low overhead with small workloads. 
 
The next configuration (b) is called monolithic persistent container. Again, one navigator and 
one dispatcher run on the same machine, but the storage of the state information is 
implemented using a remote, persistent, data repository. This makes the container recoverable, 
at the cost of a larger overhead, as the results already shown in Figure 3 indicate. The 
limitations of these centralized configurations concern all five main system components: the 
Navigator, the Dispatcher, the Task Execution Scheduler, the State Information Storage and 
the Event Queues. If one is replicated in order to improve its throughput, very soon another 
component becomes a bottleneck. For example, if a set of navigators send task execution 
requests to the dispatchers through a centralized scheduler, the throughput of the scheduler 
limits the rate at which tasks can be executed. Similarly, if the performance of the state 
information storage improves, the navigator will be able to produce and consume events at a 
higher rate, putting a higher burden on the event queues. Thus, while scaling up the system 
and configuring it with replicated components (Figure 1), care must be taken to keep the 
system well balanced. 
 
The first replicated configuration we present concerns the dispatcher component. In this case, 
a single navigator (with (d) or without (c) persistent storage) manages the processes, whose 
tasks are executed by an increasingly large number of dispatchers. As the task execution 
capacity of the system increases, it is to be expected that the system may be capable of 
handling a larger workload. As the measurements show, this is only true when the task 
duration is long enough, e.g. longer than 10 seconds. For tasks lasting a shorter time, the 
actual bottleneck lies in the navigator component. 
 
This problem is addressed by the configurations (e) and (f), where also the navigator 
component is replicated, keeping the number of dispatchers and the corresponding task 
execution capacity constant. As our measurements indicate, the system’s scalability is now 
bound by the persistent storage service. In fact, using a centralized data repository with an 
increasingly large number of clients (the navigators) only scales up to a certain limit. 
Therefore, we also tested a configuration (e) having the storage of the state information 
localized at the navigator. 
 
Because of the improved performance of the storage service, the limiting factor shifted to the 
event communication service, which also had to be partitioned in order to keep the system 
functioning. 
 
 
4 Measurements 
 
The goal of the experiments is to analyze the performance of a significant subset of the 
deployment and configuration options described above. First of all we attempt to point out the 
scalability limits of a centralized system, where all the data storage, event and job scheduling 
services are implemented using the local main memory. Then we add external persistent 
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storage for the state information to determine what is the cost of adding persistence to the 
system. Then we replicate the dispatcher and navigator components, and observe the changes 
to the system’s throughput. 
 
4.1 Hardware Setup 
 
The hardware and software setup for the experiments is as follows: the navigator and 
dispatcher container components were running on a cluster of dual Pentium-III 1000Mhz PCs 
with 1024 MB of RAM using Java 1.4.1 running on Linux v2.4.17. The three tuple space 
servers dedicated to state information storage, task execution scheduling and event 
communication were running each on separate dual Athlon 1.5Ghz with 1024 MB of RAM, 
Java 1.4.1 on Linux v2.4.19 and used the IBM’s TSpaces implementation version 2.1.2 [12]. 
 
 
Variable Values 
Number of concurrent processes 1, 64, 128, 256, 512, 1024, 2048 
Number of tasks 1, 10, 100 
Task duration (seconds) 0, 1, 10, 30 
Control flow topology Sequential, Parallel, Matrix 
 

 Table 2: Workload Control Variables 
 
4.2 Workload description 
 
The behavior of the system is affected by the properties of the workload, which are defined by 
the control variables listed in Table 2. The number of processes indicates how large is the 
batch of concurrent processes to be executed. The size of a process is the number of tasks 
composing it. We used three different process sizes: 1, 10 and 100 tasks. Larger processes 
require more storage space and generate a higher number of jobs and events. The duration of 
the tasks affects the navigator’s throughput, since the longer a task runs, the longer the delay 
between a job startup request and the corresponding termination event. During this time the 
navigator(s) may be free to process other events or have to remain idle. Finally, different 
topologies of the control flow of the processes generate different patterns of event exchanges. 
In the case of a process composed of a single task there are no degrees of freedom concerning 
the control flow, but as soon as the size of the process increases it is possible to connect the 
tasks in different ways.  We have been testing our system with a variety of control flow 
graphs. In the case of ten tasks we used two topologies, one sequential, where the tasks are 
executed sequentially and a parallel one, where all tasks are executed concurrently. The same 
parallel topology has also been used with the larger process, composed of 100 tasks. In the 
case of a large process, we also tested a more complex control flow graph modeling a matrix-
like computation. 
 
4.3 Measured variables 
 
First of all, we are interested in measuring the user perceived effect of the different 
configurations. This effect is measured by how long a process takes to complete. More 
precisely, we computed the average wall-clock time over all the concurrent processes of a 
certain batch.  
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Second, for every experiment, we recorded the batch execution time, this is how long it took 
to run an entire batch of concurrent processes. In the case of tasks running for 0 seconds, the 
execution time of the batch of processes can be used to compute the average throughput of the 
system, defined as the number of processed tasks per second. This value indicates the overall 
speed of the system in performing the operations (navigation, scheduling, running and results 
gathering) required to execute the tasks. 
Third, in order to observe the system’s internal behavior we instrumented the state 
information storage services to measure the time necessary to create the image of a new 
process instance. In our experience, this critical step is a potential performance bottleneck, 
since it is not possible to perform navigation until an instance has been created. We expected 
process instantiation to be expensive since, depending on the size of the process, (a lot of) 
information about the process, its tasks and their parameters needs to be written out to the 
state information storage service. 
 
4.4 Results 
 
4.4.1 Reliability Overhead 
 
The limitations of centralized architectures can be illustrated by analyzing the performance of 
a centralized process support system. Such a system is built with a single component 
dedicated to process navigation, which uses a centralized repository to keep track of the state 
of the execution of the processes. As it has been often observed [16, 22], both centralization 
and persistence generate a significant overhead in process support systems under heavy 
workload.  

Figure 3: Performance degradation of a centralized process support system under
increasingly large workloads 

0

50

100

150

200

250

300

350

400

1 64 128 256 512 1024

Number of concurrent processes

A
ve

ra
ge

W
al

lT
im

e
(s

ec
on

ds
)

Volatile
Storage Configuration:

Process Size:  tasks
Control Flow: 

10
Parallel

Persistent (with Cache)
Persistent

0

100

200

300

400

500

600

700

1 64 128 256 512 1024

Number of concurrent processes

A
ve

ra
ge

W
al

lT
im

e
(s

ec
on

ds
)

Volatile
Storage Configuration:

Process Size:  tasks
Control Flow: 

10
Sequential

Persistent (with Cache)
Persistent

0

500

1000

1500

2000

1 64 128 256 512 1024

Number of concurrent processes

A
ve

ra
ge

W
al

lT
im

e
(s

ec
on

ds
)

0

1000

2000

3000

4000

5000

1 64 128 256 512 1024

Number of concurrent processes

A
ve

ra
ge

W
al

lT
im

e
(s

ec
on

ds
)

VolatileVolatile
Storage Configuration:Storage Configuration:

Process Size:  tasks
Control Flow: 

100
Matrix

Process Size:  tasks
Control Flow: 

100
Parallel

Persistent (with Cache)Persistent (with Cache)
PersistentPersistent



ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components                  IST-2001-37126 
 

CS Middleware Architecture                                                                                                                    10

In Figure 3 we quantify the user perceived behavior of a centralized system while running four 
different types of processes. As the results show, the system’s response time, i.e., the average 
wall-clock duration of a process, grows as a function of the system’s workload defined as the 
number of processes running concurrently within the system. Relative to an unloaded system, 
where only one process at a time is executed, in the worst case the response time grows about 
200 times when the workload size is increased thousand-fold.  
 
The actual performance degradation depends both on the type and size of the processes and on 
the specific properties of the system’s configuration (Figure 2). First of all, it can be observed 
that a relative performance improvement can be obtained by sacrificing the reliability of the 
system. In fact, using the local, volatile, memory of the process navigation component to store 
the processes’ state information, can lead to response times up to 50% shorter than the time 
required to perform navigation over persistent state. As an attempt to combine the benefits of 
both configurations, we added a write-through cache located between the navigation 
component and the persistent storage. As the results indicate, a cache significantly reduces the 
penalty of using a remote storage service but still has limited scalability. 
 
 
 
 
 
 
 
 

 

Figure 4: Throughput degradation of a centralized process support system under 
increasingly large workloads 
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4.4.2 Monolithic container 
 
In addition to the results already presented in Figure 3 concerning the degradation of the 
response time of a centralized system under increasingly large workloads, we would like to 
display the corresponding throughput’s degradation in Figure 4. This set of measurements has 
been performed with a monolithic container configured to use volatile storage and up to 64 
threads for local task execution, i.e. its execution capacity is limited to 64 concurrent tasks. 
For all process types, the maximum throughput is achieved when running the smallest 
workload. As the number of concurrent processes increases, the throughput decreases to a 
minimum. The actual degradation rate depends on the process topology, as the overhead of 
navigation is more important for larger and more complex processes. 
 
4.4.3 Process Instantiation 
 
Figure 5 displays the average process instantiation time as a function of the number of 
navigators, the size of the process and the configuration of the state information storage. As 
we expected, the instantiation time grows linearly with the process size: the higher number of 
tasks, the more information about them needs to be written to the data repository. The Figure 
also contains two interesting results. Not only is the instantiation time using persistent storage 
more than one order of magnitude longer than the time with volatile storage, but also, the 
volatile storage scales well with the number of navigators, since the process instantiation time 
remains constant. On the other hand, the performance of the centralized repository degrades as 
more and more navigators store in it data about their new processes. As it has been often 
suggested [16, 22], replicating the persistent storage would alleviate this problem. In all cases 
the instantiation time remains well below the 1 second boundary. 
 

 
 

Figure 5: Scalability of the process instantiation 
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4.4.4 Scalable Process Navigation 
 
Figure 6 shows the average system throughput with processes of 10 parallel tasks run with a 
variable number of navigators, 25 dispatcher components and different workload sizes. (a) In 
the case of persistent storage, for all workload sizes the throughput peaks at 12 navigators at 
about 140 tasks/second. This is a significant improvement with respect to a centralized 
system, especially considering that the throughput does not degrade as more and more 
processes run concurrently. In (b) the throughput actually improves as the workload size 
increases, indicating that, in the case of volatile storage, the performance of the replicated 
navigator does not saturate. Although the absolute throughput reaches about 350 tasks/second, 
this value is also obtained with 12 navigators, as the centralized task execution scheduler is 
the limiting factor of this configuration. 
 
Figure 7 shows the system response time with up to 2048 concurrent processes of 10 
sequential tasks run in the same settings as Figure 6. It can be observed that for small 
workloads, as the number of navigators increases the batch execution time approximates the 
time necessary to run only 1 process, which is close to 10 or 100 seconds, depending on the 
duration of the tasks. For larger workloads, the response time still grows linearly with the 
workload size, although the rate of increase can be controlled by changing the number of 
navigators. Using volatile storage the system scales well up to 20 navigators. Although the 
absolute response time is twice as high, the penalty of adding persistent storage is acceptable, 
as it shows good scalability up to 16 navigators accessing the same centralized data repository. 

 (a) Processes of 10 parallel tasks with persistent storage 

 (b) Processes of 10 parallel tasks with volatile storage 

Figure 6: Scalable navigation: average throughput of the system using an in-
creasingly large number of parallel navigators 

0

50

100

150

200

250

300

350

400

0 5 10 15 20 25
Number of Navigators

Th
ro

ug
hp

ut
(ta

sk
s/

se
co

nd
)

Number of
concurrent
processes

64
128
256
512
1024
2048

0

20

40

60

80

100

120

140

160

0 5 10 15 20 25
Number of Navigators

Th
ro

ug
hp

ut
(ta

sk
s/

se
co

nd
)

Number of
concurrent
processes

64
128
256
512
1024
2048



ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components                  IST-2001-37126 
 

CS Middleware Architecture                                                                                                                    13

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5 Related Work 
 
There is a wide range of commercial products and research projects dedicated to process 
management systems [8], especially regarding process modeling languages, with emphasis on 
flexibility [25] and transactional properties [21].  
Relatively less work can be found about distributed architectures for scalable process 
execution. More specifically, scalability has been a common goal to be achieved through 
different means: replication at the database layer, distribution in the process execution engine 
and decoupled communication through events notification. Only rarely all of these approaches 
have been followed within the same project. 
 
The idea of building a distributed workflow enactment system based on event communication 
and event-condition-action rules has been also proposed in the EVE project [9]. The exchange 
of event notifications plays an important role in our approach, however, in our experience, 
ECA rules are only a useful intermediate representation to bridge the gap between graph based 
models, which can be more readily understood by the user designing the process, and the 
corresponding executable code. 
 
The theme of enhancing the system’s fault tolerance and scalability through replication at the 
database layer has been pioneered by [16]. Also in the MOBILE project [11], in order to 
replicate the process execution layer, a scalable strategy for distributing the process data 
among separate databases has been proposed [22]. Although we compare the performance of a 
centralized, persistent repository with a distributed, volatile implementation, in this report we 
do not pursue replicated storage any further. 
 
Decentralization has been pursued by the MENTOR project [30], where process definitions 
are analyzed and automatically partitioned among distributed execution sites in order to avoid 

Figure 7: Scalable navigation: Execution time of batches processes having 10
tasks and sequential control flow topology as a function of 4 variables: 1) the
number of navigators (X-Axis), the workload size (Z-Axis), the duration of the
tasks and the system configuration (volatile or persistent storage) 

1
64

128
256
512
1024
2048

10

100

1000

10000

0 5 10 15 20 25

Number of Navigators

B
at

ch
Ex

ec
ut

io
n

Ti
m

e
(s

ec
on

ds
)

Configuration:  storage
Task duration:  seconds

Persistent
10

10

100

1000

10000

0 5 10 15 20 25

641
128
256
512
1024
2048

Number of Navigators

B
at

ch
Ex

ec
ut

io
n

Ti
m

e
(s

ec
on

ds
)

Configuration:  storage
Task duration:  second

Persistent
1

1
64

128

256
512
1024
2048

10

100

1000

10000

Configuration:  storage
Task duration:  seconds

Volatile
10

0 5 10 15 20 25

Number of Navigators

Ba
tc

h
Ex

ec
ut

io
n

Ti
m

e
(s

ec
on

ds
)

64
128
256
512
1024
2048

Ba
tc

h
Ex

ec
ut

io
n

Ti
m

e
(s

ec
on

ds
)

10

100

1000

10000

0 5 10 15 20 25

Number of Navigators

Configuration:  storage
Task duration:  second

Volatile
1

1



ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components                  IST-2001-37126 
 

CS Middleware Architecture                                                                                                                    14

the bottleneck of a centralized engine [19]. This approach fits well with the requirements of 
workflows spanning across multiple organizations. However, it is possible for one execution 
site to become a hot spot, when it is involved in the execution of a large number of processes. 
 
Once a distributed process architecture has been designed, load balancing, network congestion 
and quality of service guarantees become interesting options. In [15] a cluster-based workflow 
management system has been presented focusing on a quantitative comparison of two 
different load balancing strategies. In [2] simulations are used to study how different 
workloads influence the load of the network and thus, the scalability of the workflow engines 
in the context of several distributed architectures. In [10] extensive simulations are used to 
validate a composition model with quality of service guarantees based on service overlay 
networks.  
 
6 Conclusion 
 
In addition to our visual composition language, in this report we also presented a novel 
architecture for a process support system container, which can be used to execute processes 
written in such language. The main innovation of this architecture consists of the ability to 
transparently tailor the system’s performance to different quality of service guarantees. By 
switching between different implementations of basic services, such as data storage, event 
communication and job execution, it is possible to deploy the same algorithm for process 
navigation in a variety of configurations, each with different properties regarding 
performance, scalability and reliability. In particular, we determine the cost of reliability by 
comparing navigation performed over volatile and persistent state. In this setting we also 
study the effect of caching. We also show that the system’s throughput can be set to the 
desired level by performing navigation in parallel, when the container is replicated across 
multiple machines. 
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