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1 Introduction

This is the 6-month report on the architecture of basic services (BS) in ADAPT. We have chosen to base
the architecture on J2EE [Sha02], and specifically on the JBoss open-source implementation [JBo]. This
decision is based on investigations in several related directions. We have examined JBoss in detail—
not only its documentation, but also its codebase. We have considered the general problem of J2EE
replication in the light of the literature on replication techniques. And we have tested several available
toolkits for group communication, a fundamental building block of replication.

As a result of these investigations, we have decided that the best way for us to implement basic
services is to build on the JBoss implementation of J2EE. However, we will replace its replication mech-
anism with a new one of our own (probably reusing a few pieces of the replication code). At the same
time, we have developed a proposal for database replication middleware, which is essentially indepen-
dent of the other architectural decisions. And the composite services (CS) architecture of ADAPT has
introduced several “glue” components, which are closely associated with the BS architecture.

This document is organized as follows. Section 2 is a critical review of the current state of replication
in JBoss. In Section 3, we describe our investigations of some group-communication toolkits. We
highlight issues with JavaGroups [Jav], the toolkit used for clustering in JBoss. In Section 4, we discuss
the J2EE replication problem in general terms; suggest the range of implementation possibilities; and
describe our design and implementation strategy for the next phase of development. In Section 5, we
present the database replication middleware. Finally, in Section 6, we describe two “glue” elements of
the CS architecture: the “Service Enactment Coordinator”, which integrates service invocations into an
overall composite process, and the “sensor/actuator” API, which exposes local properties of the basic
service installation.
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2 Analysis of JBoss Replication

This is an analysis of replication, or clustering, in JBoss version 3.0.6, the latest release at the time of
writing.

2.1 Introduction

When clustering a J2EE environment we need to consider various problems:

Replicating resourcesResources such as EJBs, the JNDI tree etc are replicated on various nodes, and
their state has to be consistent among the cluster, in the sense that a client must see the same state
whichever node it connects to.

Communication Application components deployed on different nodes have to be able to communicate
as if they were in the same JVM. In J2EE this is achieved with RMI.

Concurrency control Concurrent accesses to resources must be handled correctly. With a few excep-
tions, EJBs do not support concurrent access. The EJB Specification defines a number of rules to
follow when dealing with concurrent accesses to the same bean. This behavior must be provided
also on a cluster wide basis.

Failure handling If there is a failure while processing an operation, in some cases the operation must
be re-executed or resumed on another node transparently to the client. We will see how different
failures are handled.

Controlling accesses to External ResourcesRe-execution of requests must not produce multiple ac-
cesses to external resources such as messaging systems, data storage or legacy systems.

Transactions The behavior of transactional objects must be the same as in a non-replicated system. If a
method invocation fails over to a replica, for example, the invocation in the replica must be in an
equivalent transactional context.

When talking about replication we need to distinguish between replicating components of the appli-
cation (EJB classes, Servlet classes etc.), and replicating run-time data such as instances of these compo-
nents. In the former case components just need be deployed cluster wide. In JBoss there is a mechanism
that automatically replicates components deployed on one node to the others. This mechanism is called
Farming.

From now on, if not stated otherwise explicitly, we will refer to replication of run-time data. So with
the term EJB we indicate a specific instance of a bean. For replicating run-time data there are basically
four types of data structures that need to be replicated:

• Stateful Session Beans

• Entity Beans

• HTTP Session objects

• The JNDI tree

Basic Services Architecture: Month 6 Report 1.0 4



ADAPT: Middleware Technologies for Adaptive and Composable Distributed ComponentsIST-2001-37126

Notice that instances of Stateless Session Beans need not be replicated, but only deployed on the
whole cluster.

Before going in deep with the replication mechanisms of these structures we have to spend a few
words on the configuration of a JBoss cluster. We call a cluster a set of interconnected JBoss instances
usually running on different computers. Each instance is indicated as a node. The cluster can be divided
into partitions.1 Each component is associated with a partition, so when it gets deployed it doesn’t get
replicated to the whole cluster but only on its partition. A node belongs to one or more partitions. This
means that partitions can overlap, i.e. multiple partitions can share some nodes.

2.1.1 Subpartitions

We have put into evidence the difference between component classes and component instances, now
we will do a similar thing with replication. Replication in general has two purposes: providing fault
tolerance and enabling distribution of requests to a number of servers under high load. When we bring
this vision in the Stateful Session Bean (SFSB) context we can identify two respective replication forms.
Since each SFSB instance is associated only with one client we need only to replicate that specific SFSB
instance for providing fault tolerance.

On the other side the session bean’s class has to be deployed on many servers so we can distribute
the clients on these servers. Often replication for load distribution has different needs for the number of
replicas from the fault tolerance replication. For example we could have the bean deployed on 12 servers,
in order to be able to handle a large number of clients, but each bean instance would be replicated only
on 3 servers, because we do not need more fault tolerance than that. Now the total load of the cluster is
distributed among 12 servers, but if a node fails there are only 2 other servers that hold the same SFSB
instances and that can take its place. In this way we can keep low the number of state transfers between
servers, and provide some form of scalability.

This concept is being brought into practice in JBoss through the use of subpartitions. As we said
a JBoss cluster is divided into partitions. A SFSB gets deployed on the whole partition it is associated
with. Partitions are further divided into subpartitions. But each instance of the SFSB is replicated only
on the subpartition where it got instantiated. In other words partition size is chosen for load distribution,
subpartition size is chosen for fault-tolerance.

2.2 Stateful Session Bean Replication

Stateful Session Bean Replication is achieved by multicasting the SFSB state after each invocation to the
bean. This broadcast is synchronous (blocking) in the sense that the sender waits for an acknowledgement
from each receiver before responding to the client. We will examine in a moment how node failures are
handled.

In JBoss version 3.0.6, a distributed lock mechanism was introduced to prevent concurrent access
to the same SFSB. Unfortunately locks are still used in an incorrect way. Instead of acquiring locks
before the invocation of the bean, they are acquired only before the state transfer of the bean, after the
invocation. Moreover locks are released just after the state transfer, while they should be held until the
clients request is processed completely.

1Notice that these partitions are not the same as “network partitions” that are essentially failures in the communication
infrastructure, but a standard configuration mechanism used in JBoss. When we talk about failures we will indicate explicitly
that we are talking about network partitions.
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However this problem is avoided in the recommended JBoss configuration which is to use homo-
geneous deployment with sticky HTTP session. This means that each component is deployed on each
server instance and the same client always connects to the same server instance in the same session.
Being the Session Beans associated with the client session, we have the property that a Session Bean
instance will be always accessed on the same server instance. In this way, in absence of failures, we do
not have to deal with concurrent accesses. This also relaxes the requirements of the underlying group
communication layer. In fact we do not need total ordering broadcast semantics, because only one node
broadcasts the state update messages of a specific SFSB instance. Moreover, the fact the broadcast is syn-
chronous (blocking) guarantees us that the node processing requests from a specific client will not send
any other state broadcasts, regarding that same bean, before the other nodes have received the update.

2.2.1 Stateful Session Bean State

When the state update message is broadcast to the other nodes, the message contains the whole state of
the bean not just a difference from the previous state. The EJB Specification defines the conversational
state of SFSBs to be the serialized form of the bean instance plus any open resources held by the bean. It
is up to the bean developer to acquire and release these resources with the ejbActivate() and ejbPassivate()
methods.

JBoss in fact uses java serialization to obtain a bean’s state. Before serializing a bean, the ejbPassi-
vate() method is called and after the serialization is done the ejbActivate() method is called.

2.2.2 Failures

When using sticky sessions, a client could change the server instance it uses only when there is a failure
of that server. Various types of failures are treated differently. In general the client stub can transparently
fail over to another server or raise an exception to the client application. JBoss generates “intelligent”
client stubs that are aware of the server replication and encapsulate the clustering policy.

The general behavior is that a client stub fails over to another server if there is a communication
error, this includes also the case when the server crashes or is unreachable. On the other side, if the
server reports a GenericClusteringException for some reason, this exception also includes a status flag
that indicates the completion of the request. The flag can have three values:

COMPLETED YES The request has been processed by the server node

COMPLETED NO The request has not been processed and it can be retransmitted to another node

COMPLETED MAYBE We do not know if the request has been processed

The client fails over to another node only in the case the GenericClusteringException reported the
completion code COMPLETEDNO.

For example if the server crashes between the executions of two requests, when the client tries to
contact the server it gets no response. In this case the client stub simply sends the same request to
another node. No exception is reported to the client application, the stub automatically contacts another
server instance.

On the other hand, if the server receives the request but crashes while processing it, the client contacts
another node. In this case the old crashed server could have broadcast the updated state and the new
server could have already received the state or could have a pending update when it receives the client’s
fail-over request. For this reason the client includes along with the other data a flag in the invocation
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message that tells if this is a failover invocation or the first one. In this way the server can know whether
to process the clients request or not.

A delicate point for failures is during the broadcast phase when the sender is waiting for the ac-
knowledgement of all receivers. If one of the receivers fails the sender could block for ever waiting for
its response. But on the other side if a new node joins the cluster during this phase, the sender must not
expect an acknowledgement from this node, since the node never received the request. In order to deal
with this, JBoss takes a snapshot of the current cluster view when doing the broadcast and then it waits
for acknowledgements only from the members of that snapshot, excluding any nodes that join the cluster
in the meanwhile. Moreover if the underlying layer reports that a node has failed, it is marked so that it
is not expected to send an acknowledgement. The broadcast phase completes when all the nodes from
the initial broadcast have responded with an acknowledgement or have been marked as failed.

A bean that receives a request from the client could invoke other beans in order to process that
request. In this case JBoss would replicate the state of the other SFSBs each time they get invoked. But
if the server fails after having replicated some of the modified beans but before having completed the
processing of a clients request, the client would automatically fail over to another node that contains an
inconsistent state of the beans.

S3 

S1

S2 

Node Y 

S3

S1 

S2

Node X 

 
Client 

1. 

2. 
3. 

4. 

Figure 1: Partial Replication Failure—Client invokes S1, S1 invokes S2, S2 gets replicated then the node
X crashes before S3 was invoked.

To clear things out lets look at an example. We have three SFSBs, S1, S2 and S3 replicated on nodes
X and Y. Bean S1 on node X receives a request from the client, then it invokes bean S2. The state of
S2 gets replicated on node Y. In order to complete the request A must invoke bean S3 also, but node X
crashes before. We end up with the situation where the bean S2 has been updated on node Y but not S1
and S3.

S3 

S1

S2 

Node Y 

 
Client 

Node X 

Figure 2: Partial Replication Failure—We end up with an inconsistent state in node Y
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We have run tests and in fact it showed that in this scenario the behavior of JBoss is incorrect. This is
due to the lack of a replication aware transaction manager in JBoss. The surviving node does not realize
that the node which was processing the transaction failed and the state broadcast by that node should be
rolled back. We propose three solutions to this problem:

1. Implementation of a replication aware transaction manager, which would roll back the transaction
on all nodes if the node that was processing it crashed.

2. Broadcasting the state of all the modified beans to the other nodes only at the commitment of a
transaction. This solution would require as a must that the processing of the entire transaction is
completely executed on one node, in other words sticky sessions and homogeneous deployment
must be forced.2

3. The request id and the response should be propagated along with the bean state. If a bean replica
that has been updated receives the same request after a failure of the original instance, it returns the
response that it received with the state without re-executing. This solution requires a deterministic
environment in the sense that executing a request at any moment in the system must produce the
same results.

It is possible for a transaction to span several invocations of a stateful session bean. (The same is true
of entity beans.) In this case, solution 1 could not be made transparent to the client. Rolling back the
transaction might undo more work than just the current method, requiring some of the calling code to be
re-executed. We also discuss this transactional issue in another deliverable [JPPM03].

2.2.3 Network Partitions

A special class of failures are network partitions.3 When the cluster is divided in two or more partitions
the nodes cannot communicate and they cannot keep a consistent state between them. In general there
are two approaches to deal with network partitions: the primary partition approach and the partitionable
approach. With the primary partition only one of the network partitions is active until the cluster merges
again, then the state from the primary partition is transferred to the members that were on the non-primary
partition. There are many policies for deciding which the primary partition is, but all require that there
be only one primary partition.

In a partitionable approach all partitions can process requests, possibly with some restrictions. When
the cluster merges, the state in various partitions has to be merged in some way. This state merging is
more complicated than the one used for the primary partition approach.

We can say that JBoss uses a partitionable approach with some restrictions when dealing with
SFSBs.4 If using sticky sessions, a client always contacts the same server. If under a network parti-
tion that server is unreachable the client changes server until it reaches a server on its own partition.
SFSBs are associated only with one client so we know that a SFSB will never be modified on another
partition. Moreover each time a client accesses a server, the clients view of the servers list is updated
by that server, so the client will see only the servers on its own partitions and if the server it is bound to
crashes it will fail over only on a node on the same partition.

2This solution was proposed and implemented by Sacha Labourey (JBoss Group) but never committed to the CVS.
3In this paragraph we will refer to the network partition with the term partition and not to the JBoss partition used to

configure the cluster.
4Actually the approach is a hybrid between partitionable and primary partition.
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Client 2 

Partition A Partition B

S2 
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S3 
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S3
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S1 

S3 S2 

S1 
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Figure 3: There is a network partition, Client 1 uses partition A and Client 2 uses partition B

When the two partitions merge there is no explicit SFSB state merging. The client doesn’t yet know
of the presence of the new nodes that joined its partition. Only when the client sends a new request to the
node it is bound to, the state of the SFSB will get broadcast on the nodes that have joined the partition
and the client will receive the new view of the cluster, so it will be able to fail over also to the other
nodes.

This approach works fine in general, but there is a drawback. If the node a client is bound to crashes
after a partition merge, but before the client made any requests to the node. The client could not fail-over
to the nodes that have joined the partition. Moreover the client must have a different server list for each
SFSB. Because if the client has multiple beans on the server, when it calls one of them after a cluster
merged, only that bean is replicated on the new members, but the other SFSBs are not up to date on the
new nodes. In this the cluster does not provide all the fault tolerance it could provide for a certain period
after a merge.

Client 
1 

Client 
2 

S1 is owned 
by Client 1 

S2 and S3 are
owned by 
Client 2 

S2 

S1 

S3 
S2

S1

S3

S2 

S1 

S3 S2 

S1 

S3

Figure 4: The partitions have merged now, the bean S2 has been replicated on the nodes that have been
in partition A, but S3 hasn’t yet.

There are still some incorrect behaviors similar to those we’ve seen when there are crashes with
partial request executions. Suppose that there is a network partition and there are two SFSBs associated
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with our client: S1 and S2. The client calls both of these beans during the network partition. Then the
cluster merges and we have S1 and S2 up to date on the nodes that were in our partition, but they are
not up to date on the other partition. Now the client invokes the bean S1 and that bean gets replicated to
the new nodes. The client receives a new server list for that SFSB. Now the node the client is bound to
crashes. The client tries to make another request for S1 but it sees that the node has crashed so it fails
over to another node from the list. Suppose it fails over to one of the new nodes that have the up to date
state of S1, but the old state of S2. Now if for some reason the processing of the request generates an
internal invocation to S2, it would be processed on that node which has an inconsistent state of bean S2.
This is another serious problem of the JBoss clustering algorithm.

Client 
1 

Client 
2 

S1 is owned 
by Client 1 

S2 and S3 are
owned by 
Client 2 

Node 4 has crashed
The client fails over 

to node 2

S2

S1

S3

S2 

S1 

S3 S2 

S1 

S3

Node 4

Node 3Node 2
Node 1

Figure 5: The node the client was bound to crashed, the client failed over to a node that has been in the
partition A, the client invoked S2, but S2 invoked S3 which is not yet up to date.

This partitionable approach is possible only if the execution of a request does not include Entity
Beans or access to the DB. In that case it is up to the DBMS clustering mechanism to define the approach
to follow, whether partitionable or primary partition. With a non clustered DBMS the approach is a
primary partition approach, where the primary partition is defined to be the one that includes the DB.

2.3 Entity Bean Replication

In JBoss, the state of Entity Beans is not replicated by the Application Server but this task is left to the
DBMS. In other words each JBoss server instance accesses the same database and in this way has the
same view of persistent data. Entity Beans are loaded from the database before each invocation and
stored after the invocation.

As defined in the EJB Specification the Entity Bean developer does not need to worry about control-
ling concurrent access to an Entity Bean instance, she/he may assume that the container will serialize all
accesses to the bean. In other words, both the client and the bean developer must see as if there is no
concurrent access to the same Entity Bean instance from different transactions. The EJB Specification
also defines three commit options:

Commit Option A The container has exclusive access to the bean state in the persistent storage. It
keeps a “ready to use” instance in memory.

Basic Services Architecture: Month 6 Report 1.0 10



ADAPT: Middleware Technologies for Adaptive and Composable Distributed ComponentsIST-2001-37126

Commit Option B The container doesn’t have exclusive access to the bean state in the persistent stor-
age, but has to synchronize its state before each transaction. It also keeps a “ready to use” instance
in memory

Commit Option C The container doesn’t have exclusive access to the bean state in the persistent stor-
age, but has to synchronize its state before each transaction like in option B. It does not keep
a “ready to use” instance in memory, instead it returns it each time to the pool of available in-
stances.5

Commit option A is not very useful in a clustered environment. As for commit options B and C there
are two policies JBoss uses to synchronize access to the bean state in the persistent storage and prevent
interferences when two server instances try to concurrently modify the same Entity Bean. These policies
are the pessimistic and the optimistic policy.

In the pessimistic policy mutual exclusion is achieved through row locking on the Database where
the bean is stored. When an Entity bean is accessed from a transaction, an exclusive lock is acquired
for the relative row in the database. This lock blocks any other transactions that are accessing the bean’s
state. After acquiring the lock, the bean state is loaded from the DB, the business method is called on the
bean, and only when the transaction commits, the bean’s state is stored to the DB and the lock released.
At this point the other blocked transactions can proceed. In this way there will be no two active instances
of the same Entity Bean on the whole cluster. This policy guarantees consistency of the database, but has
some performance drawbacks because read-only operations are also blocked.

For this purpose JBoss provides an “optimistic” policy. It is possible to define in the JBoss configu-
ration which policy to use. Even if concurrent access to the same bean instance is not permitted by the
EJB Specification, the optimistic policy uses a trick to behave like all the transactions were serialized, but
actually runs concurrent transactions on different copies of the entity bean. Only one of the concurrent
transactions can modify the bean successfully. Before invoking a bean its state is loaded from the DB.
When the transaction completes, the container checks if the state of the beans involved in the transaction
has been modified in the persistent storage from the time it acquired they were loaded. If not, the new
state is stored in the DB.

To explain things better we’ll look at an example. Consider we have two transactions A and B that
access the same Entity Bean instance. The container does not block either of the transactions because
they could be both read-only operations. Let’s say the transaction A modifies the bean and finishes first,
then the container checks to ensure that the bean state hasn’t been changed in the DB and then commits
the changes. After that transaction B reaches the end and verifies if the bean state in the DB has changed.
It sees that in fact it did change so it rolls back the whole transaction.

With the optimistic policy a system with a lot of update operations would have many roll-back op-
erations. On the other side with a pessimistic policy a system with a lot of read-only operations would
block a lot unnecessarily. For these reasons an administrator has to be careful which policy to choose.

As we said concurrent access to an Entity Bean instance from different transactions is never perceived
by the bean developer (although the container may do the trick of running concurrent transactions of
different copies like in the optimistic policy). But concurrent access to an Entity Bean instance from the
same transaction is sometimes possible. By default an Entity Bean in declared as non-reentrant. This
means that there can be no callback methods on it. Reentrance is a special case of concurrency. An Entity
Bean can be declared as reentrant in its deployment descriptor. In this case it’s up to the bean developer
to deal with concurrency.

5This pool contains empty instances of an Entity Bean class that are not associated with a particular business object instance.
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Figure 6: Two concurrent transactions in the Optimistic Policy.

While serialization of accesses to a bean’s state in the persistent storage is managed by the container,
as we said earlier, entity bean replication is left to the DBMS. In case the DBMS is not replicated we
would have a single point of failure for the whole system. It is also left to the DB replication mechanism
to decide how to behave in presence of network partitions and handle state merging.

2.3.1 Entity Bean State

When we talk about state, there are two types of Entity Beans: Container Managed Persistence (CMP)
and Bean Managed Persistence (BMP).

The state of the CMP Entity Beans is defined using the cmp-fields. These cmp-fields are defined
in the deployment descriptor and for each cmp-field there has to be a setter and a getter method. The
bean provider has to declare these methods as virtual in the EJB class. The container is responsible for
implementing these methods and accessing the persistent storage. The state of each field is defined by
the java serialization mechanism.

The state of the BMP Entity Beans is defined by the bean provider through the methods ejbLoad()
and ejbStore(). The bean providers responsibility is to synchronize the state of the bean with the DB
using these two methods.

2.3.2 Distributed Cache

The advantage of using Entity Beans should be to simulate the behavior of an in memory cache, but this
does not happen in JBoss at the moment, since they load and store the state of an Entity Bean on each
invocation. Currently a distributed cache for Entity Beans is under development. It is still in an early
phase of developement, thus many things haven’t been defined yet. The cache will have also distributed
locks as a feature. The presence of the distributed cache means that Entity Beans will not have to be
loaded from the DB on each invocation.

This distributed cache will be used both for Stateful Session Beans and for Entity Beans. It will be
a highly configurable JBoss service, so any other service will be able to use it. At the moment JBoss
authors have identified three semantics that the distributed cache will implement.

Asynchronous On each update of the contents the broadcast operation will return immediately.
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Synchronous The broadcast operation will wait for acknowledgements.

Serialized SynchronousA distributed lock mechanism will prevent two nodes from modifying the
same object concurrently.

It is not yet clear where will the various policies be used and how will the EJB replication algorithm
be mapped to the distributed cache.

One of the relevant issues is that the cache will implement the XAResource interface. This means
that the state replication on the cluster will be able to take part in a two phase commit protocol along
with the other resources involved.

It is probable that the distributed cache will also make possible the replication of the Database in
case of container managed persistence. Each node will have a local DB instance and all changes will
be replicated on the cluster. So it will not be necessary to use a clustered DBMS in order to replicate
those beans. As for the Bean Managed Persistence, the database will be accessed directly by the bean
and it won’t be replicated automatically by the application server. Of course the database itself could be
replicated.

2.4 HTTP Session Replication

The Web Container of JBoss can be either Jetty or Tomcat. Jetty is the default one and it supports all the
HTTP Replication strategies:

Extended (JBoss based)This strategy is the default one; it supports the basic replication schemes.

Extended (Jetty based)Session replication based on a Jetty plug-in.

Migratable This strategy doesn’t support replication, an application can be moved from one node to
another.

Whether Jetty is used or Tomcat, there are three replication policies that define when an HTTP session
gets replicated. These are:

Instant Snapshotting Sessions are replicated after each HTTP request.

Interval Snapshotting Sessions are replicated on a time-based interval. This policy is useful if the same
client is accessing multiple Servlets concurrently, for example through a HTML frameset. In this
case the HTTP session gets replicated only once.

Economic SnapshottingSessions are replicated only if the setAttribute() method has been called. No-
tice that the session won’t get replicated in case an attribute that is already in the session is modi-
fied.

The HTTP Session object gets serialized for replication, thus all objects that are stored in it get seri-
alized as well. The HTTP Session is usually used for storing Stateful Session Bean Instances associated
with the owner of the HTTP session. But this doesn’t mean that each time we replicate the HTTP Ses-
sion, all the Stateful Session Beans that are in it get replicated. What’s in the HTTP Session object are
only references (remote interfaces) to Stateful Session Beans. So when we replicate an HTTP Session
only these references get replicated.
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The HTTP Session implementation is a serializable object called SerializableHttpSession. The repli-
cation of the that object is implemented in JBoss through an Entity Bean. This bean provides a cmp-field
called Session, whose setter and getter accept a SerializableHttpSession. The setter is invoked by the
servlet container each time it wants to replicate the session. The EJB container that hosts the entity bean
replicates the data on the cluster. All information stored in the session gets written to the DB each time
we invoke the setter of the Session property of the HTTP Session bean. Synchronization and concurrent
accesses are handled by the bean container exactly like for other entity beans.

2.5 JNDI tree replication

The JNDI tree provides a naming, directory and lookup service. Java objects can be stored in the JNDI
tree. It is normally used for storing the application configuration environment and finding home interfaces
of EJBs. Each EJB is associated with a JNDI name in the tree. When a client wants to create an EJB
instance it looks up the Home Interface in the JNDI tree and obtains a stub to the home object of that
bean. Then the client invokes the create method through that stub that returns the remote object of the
newly created bean instance. Now the client can access all the EJB business methods through this remote
object.

In JBoss each node has a local JNDI tree and shares another distributed JNDI tree with the other
nodes. Clients that access the JNDI tree are treated differently than EJBs that access the JNDI tree. A
client connects to the JNDI service specified in the jndi.properties file. This file contains a list of servers
that are hosting the JNDI server. The client tries to connect to a server in the list, and if its not available
it tries with the next server from the list. If the list does not contain any addresses, a discovery protocol
is used to dynamically find a JNDI server.

When a client looks up an object in the clustered JNDI service, the node contacted by the client first
searches in the replicated JNDI tree. If the object cannot be found there it looks into the local JNDI tree.
If the object is not even in the local one, then the node asks all other nodes if they have the object in their
local JNDI trees. Finally if no node contains the object a NameNotFoundException is raised.

Unlike clients, EJBs access only the local JNDI Tree when they look for objects. This solution
was chosen because of compatibility with existing applications. Some applications assumed that the
environment was not clustered and EJBs were invoked always on the same machine. Furthermore The
EJB container has to keep a separate list for local and remote objects. This solution has also the advantage
of keeping a low network traffic with homogeneous clusters.
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3 Experiments on group communication platforms under stress

We have carried out several experiments in order to gain insights into the behavior of group communi-
cation platforms under stress. By this we mean a scenario in which the application layer (e.g. a J2EE
clustering infrastructure) injects a high throughput into the group communication layer (e.g. on the order
of 1000 messages per second). As discussed below, our experiments have showed that JavaGroups, the
platform used in the JBoss clustering extension, exhibits highly undesirable behavior in such scenarios.

We have analyzed the following platforms, all open-source:

JavaGroups (http://www.javagroups.com) Developed by Bela Ban and used as communication layer
for the JBoss clustering extensions. It consists of a number of layers that can be stacked together
depending on specific application needs. All layers are written in Java. There is also a version
consisting of one single Java layer on top of a non-Java group communication platform (Ensemble,
developed at Cornell University). We have analyzed only the full Java implementation because
(i) it is the one used by the JBoss clustering extensions; and (ii) Ensemble is a relatively old
project.

Spread (http://www.spread.org) Developed at Johns Hopkins University by a team led by Yair Amir.
It is used in a number of environments. Spread is implemented in C but a Java programming
interface is available. Spread implements the Extended Virtual Synchrony programming model
[MAMSA94]. Essentially, this model features totally-ordered delivery and uniform delivery (called
safedelivery in this model) in a partitionable environment.

JBora JBora is an early prototype developed at the University of Trieste as part of ADAPT. It consists
of a Java layer on top of Spread. JBora is meant to export to applications a programming model
simpler than Extended Virtual Synchrony while providing total order and uniform delivery in a
partitionable environment. More details about JBora will be provided in a later deliverable.

We have configured the three platforms as follows:

JavaGroups Default stack configuration used in the JBoss Clustering extensions (as indicated in [LB02]).
Such configuration includes neither total order nor uniform delivery.

Spread Default configuration.

JBora Default configuration for Spread (JBora itself does not need any configuration that could affect
its behavior under stress).

We have exercised the three platforms as follows:

JavaGroups FIFO-ordered multicast without uniform delivery. This is the multicast configuration en-
abled by the stack configuration used in the JBoss Clustering extensions. JavaGroups features a
layer that implements totally-ordered delivery, but this is not used in JBoss. The JavaGroups dis-
tribution also features a layer that appears to implement uniform delivery, but this layer is qualified
as being “obsolete”.

Spread Totally-ordered multicast with and without uniform delivery (called safe delivery in Spread).

JBora Totally-ordered multicast with uniform delivery (called safe delivery in Spread).

Basic Services Architecture: Month 6 Report 1.0 15



ADAPT: Middleware Technologies for Adaptive and Composable Distributed ComponentsIST-2001-37126

Bear in mind that this comparison is in some respects “unfair”:

• The platforms have been exercised with differing ordering and delivery guarantees. Total order is
more costly than FIFO order. Obtaining safe delivery is very costly.

• JavaGroups is implemented entirely in Java; Spread is implemented in C and has a thin Java layer
on top; JBora is a Java layer on top of Spread.

However, our results are indeed useful to gain insight into the behavior of each system.

3.1 Structure of each experiment

We have consideredthroughputas the only performance index. The code we have used is available upon
request and can be customized easily (e.g. for measuring latency or other indices).

There is a predefined number of group members. Each group member is a receiver and some group
members are also senders.

Initially, each group member waits to receive a view with the expected number of members. Then,
each sender spawns a separate thread for multicasting messages. Finally, each member waits to receive
the expected number of messages and then terminates.

Each sender thread executes a loop ofnumBurstsiterations. At each iteration it multicastsmsgPer-
Burstmessages and then sleeps fornsleepmsecs.

Each receiver determines the local time (System.currentTimeMillis() ) after receiving the
first message and after receiving the last message. Throughput is measured as the number of received
messages divided by the difference between these times. The number of received messages will be
numBursts * msgPerBurst * numberOfSenders.

The code executed by each group member reads the following parameters from a text file:

• Whether the group member is a sender;

• Number of expected group members (4 in all the experiments);

• Message size;

• Number of messages per burst (msgPerBurst);

• Sleeping time between bursts (nsleep);

• Number of bursts (numBursts);

• Number of senders (numberOfSenders).

3.2 Operating environment

Software:

• JavaGroups version 2.0.3.

• Spread version 3.16.2

• Windows 2000 Professional SP2

Hardware:
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• Four Dell Optiplex GX300 (PIII 800 MHz, 512 MB RAM)

• 100 Mb Switched Ethernet

3.3 Results

Message size is in bytes and times are in msecs. Of course, the workload space has a very large number
of dimensions. By no means do the following results provide a complete throughput characterization
of the three systems. In particular, we remark again that we focussed on scenarios where the system is
highly stressed.

As indicated in the following tables, most of the experiments failed with JavaGroups. This means
that at least one of the four processes did not receive all the expected messages, so it did not terminate
(see also next section).

Platform Senders Msgs/sec KB/sec
Spread 1 633 316
Spread 2 1279 639
Spread (safe delivery) 1 640 320
Spread (safe delivery) 2 1254 627
JBora 1 576 288
JBora 2 871 435
JavaGroups 1 561 280
JavaGroups(test failed) 2 785 392

Test 1: Each sender attempts 1000 msg/sec (10 msgs every 10 msecs): message size 500 bytes.

Platform Senders Msgs/sec KB/sec
Spread 1 316 1583
Spread 2 576 2883
Spread (safe delivery) 1 323 1616
Spread (safe delivery) 2 288 1441
JBora 1 323 1616
JBora 2 359 1717
JavaGroups(test failed) 1 316 1583
JavaGroups(test failed) 2 275 1379

Test 2: Each sender attempts 1000 msg/sec (5 msgs every 5 msecs): message size 5000 bytes.

3.4 Key highlight

The main highlight is this:JavaGroups appears unable to sustain large throughput injected into the
system. Some members maysilentlystart missing messages, but the other members are not notified of
this failure.

In particular, when this phenomenon does occur, the following happens:

1. At least one group member, sayp, starts missing messages.
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Platform Senders Msgs/sec KB/sec
Spread 1 353 3531
Spread 2 373 3737
Spread (safe delivery) 1 359 3590
Spread (safe delivery) 2 365 3651
JBora 1 245 2452
JBora 2 251 2511

Throughput injected by each sender: 4000 msg/sec (20 msgs every 5 msecs); Message size 10000 bytes.
JavaGroups seems unable to sustain this throughput.

2. p stops receiving messages, i.e. there are no holes in the sequence of messages received byp.

3. p is not identified as a “faulty” member: the other group members are given no notification at all
of the fact thatp is missing messages. In particular, if the “correct” group members do not leave
the group, thenp will remain a group member “forever”; and if the “correct” group members leave
the group, thenp receives a view change describing the new composition of the group.

While the above behavior is consistent with primary-partition virtual synchrony, it is evident that
similar scenarios are highly undesirable in practice.

We do not exclude that the above behavior could be avoided with some parameter tuning of the
JavaGroup stack. We have made a few unsuccessful attempts. Nevertheless, we believe that this phe-
nomenon is important to know, in particular, because (i) we have used thedefaultconfiguration for the
JBoss clustering extensions; and (ii) it manifests itself only when the system is “stressed”.

We have done many tests varying the sleeping time and the message size (keeping the other param-
eters as in test 2) and we have found that the behavior manifests itself whenever the message size is
larger than 2KB. For some combinations of parameters the problem does not always manifest itself. One
experiment run may terminates correctly, but a repetition performed immediately afterwards does not
terminate.

3.5 Other observations

The performance difference between the three platforms is not “huge” in these experiments. However,
experiments with 2 or 3 group members and large throughput showed that JavaGroups performed much
worse. Also, we must keep in mind that the ordering and delivery guarantees for JavaGroups are much
weaker than those for Spread/JBora.

We expected that the performance of JBora might be lower than that of Spread, because each event
received by JBora must pass through a mailbox and a thread context switch. It is not yet clear whether
the performance loss that we have observed is important enough to warrant profiling, etc. We’ll look at
this later.

We have observed that, in each experiment run, Spread/JBora starts delivering messages “immedi-
ately”, whereas with JavaGroups there is a noticeable startup delay.

3.6 Further experiments with Spread

In order to gain further insights into the behavior of Spread under stress, we have performed additional
experiments injecting an even higher load into the system. We have considered the same hardware and
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software environment as the one previously described. We have performed experiments with one sender
thatcontinuouslyinjects new multicasts into the system.

We have found that when Spread is unable to sustain the multicasting load injected by the application:

• Spread expels the sending group member from the group. (Note, this is different from virtually
partitioning the sending group member from the other members.)

• The surviving group members receive a membership change notifying them about the failure.

In other words, the group member introducing an excessive load is treated as if it had crashed; detection
and notification of such reconfiguration is quite fast. (We have not measured this time, which is controlled
by the internal timeouts of Spread; however, there is no noticeable delay between the forced failure and
the delivery of the view change.) We find this behavior reasonable and much more acceptable in practice
than the one we have observed with JavaGroups.

The multicasting load that triggers the above scenario may vary widely between repeated executions.
However, we can observe some common patterns. If new multicasts are generated continuously and at
full speed, then the sending group member was almost always expelled from the group quickly: after ap-
proximately 1 minute for 100-byte messages, and approximately 20 seconds for 1 KB messages. During
this time, the number of multicasts injected into the system was a few thousands in the former case and
some hundreds in the latter. If new multicasts are generated continuously, but with a sleeping time of 2
msecs between two consecutive multicasts, then the sending group member was almost always expelled
from the group quickly, but the time before the forced failure tended to be slightly smaller. We made
similar experiments by placing an additional load on the sending machine (a simple application writing
on a MySQL database). We observed the same behavior as above, again with a time before the forced
failure that tended to be smaller. We remark, however, that these tests were highly demanding because
there was a continuous generation of new multicasts.

To summarize, in our tests Spread was able to sustain a continuous load of between 500 and 1000
new multicasts per second depending on the additional load on the sending machine. (Recall that these
experiments, like the others with Spread, were performed with the strongest ordering and delivering
guarantees.)

We interpret the failure forced by Spread in case of excessive load as due to an overload of the
sending buffer. That is, when Spread detects that the amount of data waiting to be multicast is above
a certain threshold, Spread expels the group member from the group. This hypothesis is based on our
observed comparisons between the multicasts received at the moment of the forced failure with those
previously sent. It follows that Spread might forcibly expel a group member even in cases of short peak
loads. Clearly, this behavior would be undesirable, in particular because of the many complex software
modules that will be executed on a Basic Service machine. We are currently investigating techniques for
preventing this scenario from occurring, by applying a form of application-level congestion avoidance.
The problem appears to be complex because, according to our observations: (i) the threshold does not
depend only on the number of buffered multicasts, but on their aggregate size; and (ii) the threshold
appears to be time-varying. That is, we suspend the sending group member when the buffer size is close
to the threshold; when the group member is awakened, it appears that Spread has set the threshold to a
much lower value.
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4 J2EE replication options

We have chosen to base the architecture of ADAPT basic services on Sun’s J2EE [Sha02]. In this section,
we give a brief overview of J2EE, and discuss how it can be extended to meet the goals of basic services.

4.1 J2EE overview

Web
container Servlet

EJB EJBcontainer
EJB

Database

Client

Figure 7: Three-tier architecture of J2EE web service implementation.

As Figure 7 illustrates, J2EE is a three-tier architecture. HTTP requests are handled by “servlets”
in the web tier. These invoke business logic encapsulated in “Enterprise Java Beans”, or EJBs. These
in turn connect to the database, reading and writing persistent data. The three tiers may be distributed
transparently across physical hosts.

The J2EE architecture may be summarized in terms of a variety ofcomponentsandcontainers. A
component is a class, or a set of associated classes, written by a developer according to the standard.
A container is an engine for running components: it receives the actual request for a component, then
instantiates the component and invokes it accordingly. The container may also provide services for the
component to call during execution of the request.

For example, in the web tier, the component is a servlet (or a JSP page compiled into a servlet).
When an HTTP request arrives, it is handled by the web container, which instantiates the servlet and
calls its service method. While the servlet executes, it can read the request, generate the response, and
access a state object (the HttpSession) associated with the client-server conversation.

In the EJB tier, the components are session and entity beans. The container instantiates the beans on
request. It generally manages the association of transactions with the method invocations (“container-
managed transactions”). The EJB container may also automate the mapping of bean state to the database
(“container-managed persistence”). Either way, the container supplies the JDBC connection used for
reading and writing.
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4.2 Asynchronous operations

The J2EE architecture has been developed for client-server and web applications. At both the EJB
and web layers, it is designed for request-response operation. This is a primary mode of operation
for web services, but by no means the only one. The Web Services Description Language (WSDL)
standard [CCMW01] specifies four kinds of operations: in addition toinput-output, i.e. request-response,
operations may beinput-only, output-only, or output-input. Further, Alonso et al. [AJB+03] argue that
the most important messages for practical web-services use areasynchronous, that is, messages whose
sender does not expect an immediate response.

In WSDL terms, asynchronous messages correspond toinput-onlyandoutput-onlyoperations. Input-
only operations can be treated as a special case of input-output operations. The client sends a request, and
receives either an empty response message, or an acknowledgment at the transport level. This presents
no difficulties for the architecture we have sketched.

With output-only and output-input operations, though, the interaction is not driven directly by a client
request. Instead, the server itself initiates message sending (and in the case of output-input operations,
the server waits for a response). Implementing such operations requires a different kind of process within
the server, not corresponding to any of the components in Figure 7. This process will act as an EJB client,
creating a sequence of transactions and using them to invoke EJB methods. It will compute messages
and dispatch them to the remote server.

We propose to treat processes like this as a third type of component. As with servlets and EJBs,
instances of this component will implement a standard interface. They will be managed by a custom
container. Figure 8 shows the extended architecture.

Web
container

EJB EJB

Servlet MG

container
EJB

container
Message−generator

Client

Database

Figure 8: J2EE architecture, extended with a simple container for components that generate messages.

4.2.1 Message-generating components and JMS

J2EE specifies a standard API for “messaging”: the Java Message Service [HBS+02]. JMS provides
standard interfaces for such messaging abstractions as endpoints, listeners, queues, subscription, etc. It
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may be relevant to the basic-services architecture in general, and to the “message-generating component”
in particular.

First, the JMS API is not biased toward synchronous messaging, as the servlet API is. Inbound and
outbound JMS messages are not closely coupled. Replying to a message is easy, but is not required.

Second, there is a form of EJB called a “message-driven bean”, which is invoked on receipt of a JMS
message. In principle, messages arriving at the web service could start computation by triggering such a
bean, rather than by invoking a servlet. More interestingly, message-driven beans are the only component
of the J2EE architecture that is designed to run asynchronously, rather than on behalf of a client which
is waiting for a response. We are investigating whether such beans could play the role suggested for
message-generating components. One drawback is that message-driven beans are stateless (and there is
no state object officially associated with them, comparable to the HttpSession for servlets). Another is
that the only way to initiate computation with a message-driven bean is to send a message; in some cases,
this may be a gratuitous extra level of indirection.

However, we are continuing to investigate the possibility of using message-driven beans. We will
describe message-generating components in detail in a later deliverable.

4.3 Architectural goals

One of the goals of the ADAPT project is to implement services in such a way that they areadaptable.
For basic services, we have chosen to focus on two forms of this problem: adaptability to system failure
and adaptability to load. Our basic strategy to achieve these adaptability goals is replication.

Another major reliability goal for ADAPT basic services is that ofexactly-once execution. In a
replicated web service implementation, the computation for an operation may be repeated, in whole or in
part, for several reasons. First, when a replica fails, any pending computations it was working on must be
“failed over” to another replica, so they can be completed. This must work correctly even if some of their
results have been saved to persistent storage. And second, since the client connects across a wide-area
network, it may experience delays and failures. Thus the implementation must be prepared to receive
multiple copies of any client request.

Frølund and Guerraoui [FG01] have presented important work on implementing exactly-once re-
quest semantics. The system they describe, though, is considerably simpler than J2EE. First, it is state-
less. J2EE, on the other hand, has stateful components, some of which form a shared cache of rows
in the database. Second, they consider requests in isolation, while for web services, we must support
conversations between client and service.

4.4 Elements of replication

The J2EE model is not designed explicitly for replication. However, its component structure is actually
quite suitable for replication, with only minor modifications.

The computation performed by the J2EE server can be broken down into the state of the participating
components, and the invocations between them. The replication schemes we are considering (see Section
4.5) are generallypassive. That is, there may be many replicas of a component on different hosts, but
when a component is invoked, the computation is actually performed by only one replica, the “primary”.
Some time after the invocation completes, a message is sent from the primary to the other components,
updating their state to the values held by the primary. Thus, a prerequisite for any replication scheme is
an understanding of how the state of each type of component can be read and set.

For historical reasons, the state of the J2EE components is encapsulated in slightly different ways.
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Component Container Instance key State

Servlet Web Client ID HttpSession
Session Bean EJB Client ID + class Bean instance

Entity Bean EJB Bean key + class Bean instance
Message generatorMG container Unique ID MG instance

Figure 9: Table of components in the model, with the enclosing container; the key that identifies a
component instance; and the object that encapsulates component state.

Servlet The state is the HttpSession associated with a client conversation.6 To transmit it, JBoss (and
other replication schemes [Han02]) use Java serialization, on the entire HttpSession object or on
the individual entries.

Stateful session beanThe state is the fields of the bean instance, including private fields. (See the
discussion of “passivation”, in version 2.0 of the EJB specification [Sun02], section 7.4.1.)

Entity bean When the EJB container manages the mapping of the bean to the database, its state is the
bean’s “properties”, i.e. public pairs of getter/setter methods. (See the EJB spec [Sun02], section
10.3.1.)

If a message-generator component is simply a message-driven EJB, as discussed above, then it will have
no state. But if we define a new kind of component for this architecture, we will be able to specify that
it is stateful. We would define the state in whatever way seems most consistent—perhaps following the
model of the stateful session bean.

With each type of component, we may also speak of a key, which uniquely identifies a component
instance. The containers use this key (at least logically) to look up the right component instance at
invocation time. In replication, the key is used in each state update message, to match state items with
components.

Servlet The instance key is the identity of the client. In a web application, this is often represented by a
“cookie” sent in the HTTP transport layer, along with the messages.

Stateful session beanThe key is the identity of the client, plus the bean class.

Entity bean The bean class, plus the unique key of the underlying database rows.

The key for a message-generator component will be a unique ID allocated at the time it is launched.
Figure 9 summarizes the components of the extended J2EE model, with keys and state.
From the programmer’s point of view, replication imposes only a few extra conditions beyond those

already specified by J2EE.

• Items stored in the HttpSession must be serializable.

• Stateful session beans are serialized and deserialized for replication, not only for passivation and
activation.

• Entity beans are serialized and deserialized for replication, not only for container-managed persis-
tence.

6More fully, it is the set of all objects reachable starting from the HttpSession. The same extension applies to the other state
definitions.
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4.5 Replication techniques

A wide variety of replication options have been studied in the literature. In general, we are considering
only “passive” replication algorithms. But within this class, algorithms vary widely. In terms of com-
munication, for example, some send a large number of messages between replicas, and some send only
a minimum. In this section, we briefly examine two proposals that span this spectrum.

Huaigu Wu of the McGill group has proposed a replication scheme called “Sib”. In this model, each
component (servlet or EJB) is considered separately for replication. When a request arrives at the com-
ponent, it is “logged” by multicasting a copy of the request to all replicas. During the course of request
processing, the state of the component is periodically multicast to the replicas. When a component fails,
the request can “fail over” to a replica, which can then continue the computation from the last check-
point. In “optimistic” variants of this algorithm, request and state logging may be deferred for subtrees
of the component invocation tree. This reduces the number of distinct multicast messages sent during the
processing of a request; but it means that on failover, the computation must be restarted from an earlier
point.

As a representative of the opposite end of the spectrum, the Bologna group has proposed a “minimal-
ist” replication algorithm, which uses group communication as little as possible. In the course processing
one request at the top (servlet) level, just one multicast is sent among the replicas in the group. This
means that failover must be handled by the Web service client.

Our goal is to make possible a wide range of possible algorithms. Accordingly, we plan to develop
a “replication framework” within the J2EE server code. Different replication algorithms can be imple-
mented within this framework; in principle, they could even be swapped in and out with a configuration
mechanism. In a future deliverable, we will describe this framework, and the specific replication algo-
rithms, in detail.
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5 Transaction support

This section includes material also presented in the progress report on transaction support, from the
Madrid group.

5.1 Transactions within a replicated server

Within the J2EE architecture, the concept of transactions is represented by the Java Transaction API
(JTA) [CM02]. This API expresses several key abstractions:

Transaction manager There is one transaction manager, which can create new transactions. It is the
coordinator of the two-phase commit protocol.

Transaction Stands for a set of changes, which may be committed or aborted together. Transactions are
associated with threads: there may be up to one associated with the current thread.

Transaction participant A resource holding changes that depend on a transaction. Provides prepare,
commit, and abort methods for the 2PC protocol.

The most important transaction participant is the JDBC driver. J2EE requires that the transaction
manager correctly handle JDBC drivers that do not support the two-phase commit protocol (i.e. do not
implement the interfacejavax.transaction.xa.XAResource ). The replicated database mid-
dleware used in ADAPT, though, will support 2PC, so this is not an issue.

The other major transactional data in J2EE is the state of the components, particularly entity beans
and stateful session beans. This state is not directly modeled as a transactional resource, however. In-
stead, the EJB container treats it as a cached copy of the underlying data in the database. At key points
(load, commit, and rollback), the container loads the state from the database, or flushes the bean instance
from memory, in order to guarantee consistency between the cache and the database. While a bean
works on a request, its data may be out of sync with the database. During this time, other threads may be
blocked from accessing the bean.

J2EE does not provide for the transactional management of HttpSession state. For web service
implementations, the HttpSession will probably contain nothing more than remote references to EJBs.
However, it certainly can be used for more, so for consistency, we plan to add such support.

5.2 Replicated database middleware

In the architecture for BSs (see Section 4), the database is always accessed from the EJB tier. The
EJBs, in turn, access the database through JDBC. Given that the application server can be replicated for
availability and performance reasons, the replicated database should take into account that its clients can
be replicated as well. This architecture is depicted in Figure 10.

We will consider two different replication models for the application server:

• Active replicated application server, that is, all the replicas of the application server submit the
same sequence of requests to the database.

• Passive replicated application server. Only one replica of the application server, the primary, exe-
cutes the requests from all clients, and accesses the database. The primary periodically checkpoints
its state and multicast it to the remaining replicas, or backups. If the primary fails, another replica
takes over. In case of failover, the new primary might repeat part of the work (i.e., submit duplicate
JDBC operations) already performed by the failed primary.
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Figure 10: Database Replication Middleware

Both models require the handling of duplicate JDBC requests. In the active replication model, a
mechanism will be required to identify identical requests from different replicas of the application server.
On the database side, these duplicates must be detected and removed. In order to guarantee consistency,
the database will require from the replicated application server to send exactly the same sequence of
JDBC requests from each replica. In the passive replication model, duplicates can only happen during the
fail-over. The requirement imposed by the replicated database in this case is that the replica taking over
should identify duplicate requests in the same way the failed replica did. This means that independently
of the assumed replication model a duplicate removal mechanism is needed.

Without loss of generality, from now on, we will assume a passive replicated application server (the
active model can be seen as a special case). Some of these requests might be duplicated (during failover),
but since duplicate requests are filtered out, they do not pose any inconsistency problem.

In the passive replicated approach, a transaction is only tracked by the transaction manager in the
replicated application server that executes the transaction. In order to enable fail-over, it is necessary to
checkpoint the transaction manager state to the rest of the replicas of the application server. The state
corresponding to each transaction can be checkpointed at the end of each method invocation together
with the state of the stateful session beans and the set of accessed entity beans. Clients accessing the
application manager should be able to perform fail-over in a transactional context without aborting the
transaction. This might require providing a modified JTA to the client.

5.3 Dynamic adaptability of databases

Our concept of dynamic adaptability for replicated databases includes different features:

• Online recovery. The ability to recover new or failed replicas of the database without stopping
request processing and disrupting service as minimally as possible.

• Dynamic load balancing. The ability to balance the load at run time, without disrupting service
processing.
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• Dynamic control of concurrency. The ability to track dynamically the optimal level of concurrency
to achieve the maximum throughput.

5.3.1 Online recovery

The goal of online recovery for replicated databases in the context of ADAPT is to introduce recovery fa-
cilities to the replicated database so that the inclusion of failed or new replicas disrupts minimally normal
processing. Several protocols with a similar goal have been proposed recently [KBB01, JPA02]. Given
that in ADAPT the implementation of database replication will follow a gray box approach (replication
protocols are implemented on top of the database), we will use the protocols presented in [JPA02].

Our online recovery protocol basically recovers each table in a more or less independent fashion.
This feature is very convenient to prevent the disruption of service processing in the recoverer replica
(the one that sends the state to the new replica). Additionally, the protocol uses the logged updates
for recovery instead of the database itself, what uncouples the recovery processing from the request
processing. This is very beneficial since the recoverer replica can continue applying updates even to
the table being recovered. Recovery is also uncoupled from the underlying group communication state
transfer. This is important, since during the state transfer group communication is blocked, what would
result in stopping servicing requests during this period.

Another aspect worth to mention is that of simultaneous and cascading recoveries. When recovering
a set of sites in a cluster, they can restart simultaneously (very unlikely) or in a cascading fashion. In
the case of simultaneous recovery the algorithm takes advantage of the group communication primitives
and perform recovery of all the replicas simultaneously. Cascading recoveries are more difficult to deal
with. In this case, the protocol takes advantage of the fact that recovery is performed on a per-table basis.
Thereby, when a replica starts recovery, whilst a recovery is underway, it joins the recovery process in
the next table that is recovered. For instance, let us assume that there is a database with 10 tables. Let
us also assume that one replica has recovered tables 1-3 and it is recovering the fourth table when the
new replica starts recovery. The new recovering replica will join the recovery process when the recovery
of the fifth table starts and continue it till the former replica ends it. Then, the new recovering replica
will continue alone the recovery of the first four tables. This approach to recovery prevents redundancies
that would take place if cascading recoveries are performed independently. Additionally, the recovery
process is fault-tolerant. If the recoverer replica fails, another working replica takes over the recoverer
role and continues the recovery process with the existing recovering replicas.

Finally, the protocol for online recovery is adaptable in the sense that it can adapt the resources
devoted to recovery according to the spare computing capacity in the replicated database. We will later
discuss the importance of this issue in the context of load balancing.

5.3.2 Dynamic control of concurrency

A database, as any other software with finite resources, is able to increase its throughput with an in-
creasing load till a threshold. Once this threshold is reached, the lack of resources yields to a trashing
behavior, reducing the potential throughput. Unfortunately, this threshold changes dynamically with the
workload, that is, it cannot be set at configuration time.

The proposed middleware for database replication will keep a pool of connections with the under-
lying database, PostgreSQL. The number of active transactions in the database can be controlled dy-
namically by increasing or reducing the number of connections used in parallel. The question is how to
determine the optimal degree of concurrency since it is a moving target. Our plan consists in running a
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set of experiments to determine the database behavior under different workload conditions. From these
experiments an analytical model will be synthesized. The middleware will track the behavior of the sys-
tem and determine, by applying the analytical model, at which region of the throughput curve the system
is. If the trashing threshold has not been reached, the degree of concurrency can be increased. Otherwise,
if that threshold has been surpassed, the number of active transactions should be reduced. This means
that the replication middleware will adapt itself dynamically to reach the optimal level of concurrency at
each replica.

5.3.3 Load balancing

The database load balancing will be dynamic. The replication middleware should detect which repli-
cas become overloaded and distribute their load to replicas with spare computing resources. Since each
replica is dynamically adapting its optimal level of concurrency, overload cannot be detected by a trash-
ing behavior. The number of pending requests will give an estimation of the load at a given replica.
Therefore, the load balancing protocol will monitor the number of pending reques and the average re-
sponse time to detect the overload of replicas. A replica whose response time increases, it is becoming
overloaded, what will result in an increase of the number of pending request. The load balancing protocol
will decide that some pending request at an overloaded replica can be executed at other replica to reduce
the load of that overloaded replica.

Since all the request to the replication middleware are sent to all replicas, and update transactions
must sent their write set to all the replicas, every replica has a precise knowledge of the behavior of the
other replicas without resorting to extra messages for load balancing purposes.
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6 Associated CS support

The goal of ADAPT is to support adaptable composite services (CS). We have factored the architecture
into two levels: “basic services” (BS), discussed in this document, and composition, discussed in a
separate deliverable [AJB+03]. However, the two levels inevitably interact. In this section, we discuss
aspects of the architecture at the interface between the levels.

6.1 Service Enactment Coordinator

The architecture of composite services in ADAPT is distributed. A composite service description is
compiled into process descriptions that are deployed at multiple Service Enactment Coordinator (SEC)
nodes. When a composite service invokes a basic service, the actual web-service call is made by an SEC
node, not by some “master” node for that CS.

Note that this architecture does not require any particular association betwen BS nodes and the invok-
ing SEC nodes. The SEC node might be in the same local network as the BS, or the same geographical
area, but remote calls are equally possible.

6.2 Sensors and Actuators

Web service definitions express the functional properties of services: the set of messages, their format
and sequencing, etc. But some non-functional properties, particularly those related to performance, are
also of interest to clients such as the SEC. For example, if the client is in a position to choose between
two semantically equivalent services, and has access to performance information about each, it would
naturally choose to invoke the one with better performance. And further, if the performance of a service
can be affected by configuration, it would be advantageous to expose aspects of the configuration to
clients. For example, if the throughput of a service can be configured, a client might well choose to do
this before invocation, even if this meant paying a higher price.

We have discussed a number of possibilities for how such non-functional properties can be exposed
and managed. We do not have a detailed proposal yet, but the basic outlines are clear.

Service
replica 1Internal

controls

SC

Service
replica 2

Client

Service
API

actuator
API

Sensor/

Service site

Figure 11: The service controller (SC), exposing sensors and actuators at a service site. In this configu-
ration, it runs on a distinct host within the site.

Each service site that exposes non-functional properties in this way will include a dedicated archi-
tectural component. For now, we refer to this component as theservice controller, or SC. The SC will
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be accessible to clients through a standard web-service API. It will expose abstractions which we call
sensors, for readable properties, andactuators, for modifiable properties.

There are two advantages to distinguishing the SC as a separate component in the architecture. First,
it makes it easier to standardize the server/actuator API, and to some extent the implementation. Second,
it allows a service site to host the SC on a separate machine from the rest of the service. This would
relieve the service implementation proper of the communication and computation burden of the sensors
and actuators.

Note that, unlike the SEC, the SC should run on the local-area network of the service it controls. This
is because we expect it will communicate with the service implementation using non-public APIs. Figure
11 shows the SC in place at a basic service site. In this example, the basic service is replicated on two
machines, and the service controller runs on a third machine. Many other configurations are possible.
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