ADAPT
IST-2001-37126

Middleware Technologies for Adaptive and
Composable Distributed Components

Deliverable ldentifier:

Delivery Date:
Classification:
Authors:

Document version:

Contract Start Date:
Duration:
Project Coordinator:
Partners:

Replication Tools

~

 —

D3

8/19/2004

Public Circulation

B. Kemme, V. Maverick, A. Bartoli, R. Jiménez-Peris, M. iRat
Martinez, S. Patarin, H. Wu, J. Vuckovic, M. Prica, E. Artdt
di Muro, S. Wu, J. Milan-Franco

Final, 08/16/2004

1 September 2002

36 months

Universidad Politécnica de Madrid (Spain)

Universita di Bologna (Italy), ETH Zirich (Switzerland)
McGill University (Canada), Universita di Trieste (It3Jy
University of Newcastle (UK), Arjuna Technologies Ltd.(YK

Project funded by the
European Commission under the
Information Society Technologies

Programme of the 3" Framework
(1998-2002)

mformation

SOCiety
technolagins

ADAPT: Middleware Technologies for Adaptive and Composableribisted Components

IST-2001-37126

Contents

1

2

Dependencies with other Deliverables

The ADAPT Framework for Application Server Replication
2.1 Introduction

2.2 Design. e e
Uniform model of components

2.2.1
2.2.2
2.2.3
224
2.25
2.2.6
2.2.7
Implementation

Interception of invocations

Transactions
EJB lookup mechanisms

2.3

EJB Replication
3.1 Model and Assumptions
3.2 Replication Algorithm
3.2.1 Client protocol
3.2.2 Primary Protocol
3.2.3 Backup protocol
3.2.4 Failover protocol
3.2.5 Recovery protocol
3.3
3.3.1 Evaluation based on ECperf benchmark
3.3.2 Component Analysis
3.3.3 Failover
3.4 Related Work
3.5 Current Work

Web-service Object replication
4.1 Model and Assumptions
4.2 Replication Algorithm

4.2.1 Client Protocol

4.2.2 Server Protocol
4.3 Implementation
4.4

45 Related Work

Database Replication: An overview

Postgres-R(SI): An integrated database replication solion
6.1 Introduction and Overview
6.1.1 Postgres-R: the predecessor
6.1.2 Snapshot Isolation
6.1.3 Postgres-R(SI)

Replication Tools Final

Requestsandresponses

Deployment.
Furtherissues

Performance Evaluation.

Performance Evaluation.

10
......... 10

......... 12
........ 12
....... 12
....... 13
....... 13
........ 14
........ 14
....... 15
......... 16
........ 16
....... 17
....... 17

18
......... 18

......... 19
....... 19
......... 19
....... 20
........ 20
....... 21

22

23

....... 23
....... 23

......... 24
......... 24

ADAPT: Middleware Technologies for Adaptive and Composablerbisted Components 1ST-2001-37126

6.2 Replicaand Concurrency Control 24
6.2.1 Concurrency control in PostgreSQL oL, 24
6.2.2 Replica ControlforPostgreSQL uu 25

6.3 Implementation e e 26

6.4 Evaluation and DiSCUSSION e 28

6.5 Conclusionand Future Work L e 29

7 Middle-R: Database Replication at the Middleware Level 29

7.1 OVEIVIEW o o e e e e e e e 29

7.2 Online Recovery e e e e e 31

7.3 LoadBalancing 32
7.3 1 OVEIVIEW o ot e e 32
7.3.2 LocalLevel Adaptation e 33
7.3.3 Global Level Adaptation, 34
7.3.4 ExperimentalResults e 35

7.4 JDBCConnectivity e e 36

Replication Tools Final 3

ADAPT: Middleware Technologies for Adaptive and Composablerbisted Components 1ST-2001-37126

1 Dependencies with other Deliverables

This deliverable is a description of several replicationiddhat have been developed. Some of them wiill
build the building blocks for the integrated BS MiddlewaE¥L@8 due on month 29). The aspects of the
evaluation plan that pertain to replication tools are cesldny this deliverable in form of performance

measurements. Additional performance measurements couibé in the cited technical reports. The

deliverable builds upon deliverable D1 (due on month 6) Whoatlines the tasks that have to be per-
formed and the challenges associated to it. These tasksecarobided by quite independent modules
for the different tiers of a basic service architecture. Tsks are as follows:

e Replication at the application server. Sections 2 to 4 dis@ur contributions in this context.

e Replication at the database server. Sections 5 to 7 disepBsation tools on the database level.

Clearly, if both application server and database servearepleated, integration tasks might be neces-
sary to provide correct interaction. Deliverable D13 wiktfis on this aspect. We will discuss throughout
this deliverable, where such integration tasks will takacpl Several papers (accepted for publication)
and technical reports have been written summarizing pads\elopments that have been made within
the ADAPT project and which fall under deliverable D13. Aslsuthis deliverable, will only provide
a short overview of each of the contributions and refer therésted reader to the detailed papers and
technical reports.

Basically all developed replication solutions both at el of application servers as for database
replication, use group communication systems (GCS) forraamcation among replicas. The group
communication system is used for group maintenance anddifaast. In most cases, uniform reliable
total order multicast is used. For more information abouSG&ke deliverable D2.

2 The ADAPT Framework for Application Server Replication

2.1 Introduction

In recent years, the J2EE architecture has become populaetebased applications and web services,
providing services to manage transactions, persisteroelrigy, and object life-cycles. In J2EE based
application server systems, replication is an essentialegly for reliability and efficiency. Typically,
replication means that several instances of a server atedtdf one instance crashes, the others can
continue to work. Furthermore, depending on the replicationfiguration, the load can be distributed
across the different replica, and new replicas can be addedler to serve more client requests.

There exist many different replication strategies that&termined by various parameters. (i) Differ-
enttypes of componentsright have to be replicated. In J2EE, the main component&iong business
logic and state are servlets and EJBs. (ii) Replication eaadtive, i.e., each request is executed at all
replicas. The system is responsive as long as one replicarsng and returns a result. Active schemes
require deterministic execution, and can only be used fdt-talerance but not for scalability. In a pas-
sive scheme, for a given client session, one server regliteeiprimary for this client while the others are
backups. Only the primary executes the requests and naitieay state changes to the backups. If the
primary fails, failover takes place, and one of the backugrolmes the new primary, and continues the
execution. Maintaining and applying state changes at thkupais usually much faster than executing
the request itself and requires less resources. Henceattleifpss can use the unused resources to be
primaries for other clients. The disadvantage of the passiieme is the complex state transfer from the

Replication Tools Final 4

ADAPT: Middleware Technologies for Adaptive and Composablerbisted Components 1ST-2001-37126

/\F{eplication Algorithm —p——»

/ \ADAPT framework

_/L/v

- D,

J2EE server

Figure 1: A replication algorithm is layered on top of the ABPA framework

primary to the backups. (iiptate propagatiomefines how the state is propagated to backups in passive
schemes. Usingold propagation the primary stores the state information on an error-frersiptent
storage which can be accessed at failover by the new prirratljis case, the new primary can actually
be initiated only when needed after a crash. Usiragm propagation, the primary sends the state to
the backups directly via messages or distributed sharedamyerBackup instances must exist but we
can assume that in-memory propagation is faster than gritirdisk. (iv) Thepropagation timelefines
when state propagation takes place. Ustagerpropagation the state is propagated some time before
the response is returned to the usetaizy propagation, only some time after. Eager replication l¢ads
slower responses but can guarantee consistency. Lazgatpti provides fast response but consistency
might be lost if the primary crashes after a response ismetubut before state propagation.

Many commercial J2EE application servers provide some fofrreplication for J2EE. We will
discuss them more closely in Section 3.4. Understandingrtpkcations of the different alternatives is
difficult, and the choice of the best one, depending on the&p application profile, remains an open
research question. Our work attempts to be a further stdpsmdirection.

The component model of J2EE (providing components likelstrysession and entity beans, etc.)
has benefits for the development of replication support.eduires the developer to keep application
state within clearly-declared objects; the invocationshelse objects are intercepted by the server; and
transactions are handled by a central transaction manatieawell-known API. Together, these con-
straints mean that in a J2EE system, all the applicationtsv@mparticular interest for replication are
already “exposed” to the application server so that, ingipie, a replication algorithm can observe and
intervene in them.

Still, the design and evaluation of a replication algoritfon J2EE (or any practical component
architecture) requires a substantial investment in deveémt. An application server is a complex piece
of code, and modifying it is not easy. Further, much of thekwofr modifying the server is common
between different replication algorithms: most algorithiior example, will need to intercept component
invocations from outside the server. Finally, the modifaat will need to be redone or re-examined for
every new version of the underlying application server.

For all these reasons, we have chosen to develop J2EE taplistrategies in two layers (Figure 1).
The lower layer is our AAPT framework, which handles all the detailed interactionswhie underlying
server code. The specific replication algorithm is plugged the framework and runs on top of it. The
framework is implemented once and for all for a given appiicaservers, and can be used by different
replication algorithms. The interaction between the laysrdefined by an API. Through the API, the
replication algorithm sees a simplified view of the compdaémthe system and the invocations between
them. It does not see the underlying J2EE implementatiorendcomponent is invoked, control passes
to the replication algorithm before reaching the compondihie algorithm may perform other actions,

Replication Tools Final 5

ADAPT: Middleware Technologies for Adaptive and Composablerbisted Components 1ST-2001-37126

such as communicating with other replicas, before or dfieirtvocation. Building replication algorithms
on top of a framework has several advantages:

e The framework provides important building blocks that aeeassary for many replication algo-
rithms, e.g. to get and set the state of components, andaiecént calls to components, the trans-
action manager, or other services. Implementing such gefugrctionality once for all replication
algorithms, easens development and allows for reusability

e The framework hides the specifics of the given applicatiowese Only the framework devel-
oper must be very familiar with the underlying applicati@ner to be wrapped. The developer
of the replication algorithm, in contrast, is provided wihigh-level interface that is designed
specifically with replication in mind.

¢ In the context of our ADAPT project, the chosen approachvwadlb us to split development and
expertise needed for D3 among the different research parim@ modular way. Bologna was the
main developer of the framework, with extensive knowledfdBoss. Trieste and McGill devel-
oped replication algorithms focusing on their correctrass efficiency. Of course, throughout the
development, extensive communication among the researtheps took place. This was in par-
ticular needed, since the development of the replicatigoridhms started before the final version
of the framework was in place. Hence, useful feedback coelgiten at all times.

2.2 Design

In this section, we only present the major features of thenénaork. For more details, we refer to
[BBM+04].

2.2.1 Uniform model of components

For a detailed description of J2EE components, we refer tdHate, we only want to recall the following
abbreviations. In regard tBnterprise JavaBeans (EJB3ession bearfSB) can bestateless session
beans(SLSB) and do not contain internal state across client catlstateful session bearfSFSB) and
maintain internal state for the lifetime of a caller sessi&mtity beanéEB) are objects that represent
data in persistent storage (mostly database systéft@ssage beanare another kind of EJBs. They
are currently outside the scope of our research. Servlets@nponents of the web-container. We
are interested in both supporting client-server applicetias well as web services. Client applications
invoke beans through the RMI remote-procedure-call pratdéor web-services, stateless session beans
can be used as web-service endpoints (see the EJB speaifif@B@MO03], section 5.5). An alternative

is to use the Axis SOAP engine [Apa03]. In Axis, a web-senaodpoint is implemented by a special
type of component, somewhat simpler than an EJB, but likewéployed with a declarative descriptor.
For our purposes, an Axis service implementation objedniply another variety of component. Web-
service clients invoke Axis service objects or statelessiea beans through SOAP messages sent by
HTTP.

All kinds of components (currently stateful session beateieless session beans, entity beans, and
Axis web-service objects) are presented in the same wayetcetblication algorithms. Components are
created by application code, whether directly from thentlier indirectly through other components.
The framework notifies the local replication interface miecomponent has been created, passing it a
component handbierhich refers to the specific component instance. The clieytamso look up persistent

Replication Tools Final 6

ADAPT: Middleware Technologies for Adaptive and Composablerbisted Components 1ST-2001-37126

Server replication algorithm

Client Server

Figure 2: Interception points

components (entity beans) by their primary keys. When tiheyaund, the server instantiates them, and
then the framework notifies the replication algorithm thegyt have been instantiated, again providing
a correspondingomponent handleThe handle provides information about the kind of companis
name (each deployed bean class has a name), and the ingtantier. It provide methods to create
the component (e.g., at another replica), or test whethercmmponents are equal. The framework
provides methods to test whether a component has statep getldnd set the state. In the API, the state
of a component is an opaque serializable object, which casebtebetween replicas. The framework
uses EJB mechanims to access state (e.g., passivatiorsforsdeans, and reading/writing attributes
defined by container-managed persistence for entity beBos)Axis web-service objects, the class must
implement the Jav&er i al i zabl e interface.

When the client deletes a component, the framework notifieseplication algorithm before the
deletion takes place. The algorithm may not prevent theidalgbut it can perform any related process-
ing before the component disappears.

While an entity bean is in memory, the J2EE server treats & esched copy of the corresponding
persistent data. If its state is consistent with the dagbhe server may choose to flush it from mem-
ory. The AbAPT framework allows the replication algorithm to block a compnt from being flushed,
forcing it to remain in local memory.

2.2.2 Interception of invocations

When one component makes a call to another component, theatem framework intercepts the call
at three key points (see Fig. 2). At each point, the repbicailgorithm may intervene, performing any
computation or communication before or after continuimgfakt, it does not have to continue execution
along this path; it may throw an exception, or return a respaomputed elsewhere. The interception
points are (1) Just before control leaves the caller. If dikecis replicated, the replication algorithm
may synchronize with other replicas before proceeding.lf(®)e caller is an RMI client, we intercept
at the stub, i.e., client-side logic belonging to the sereg@tication algorithm. It may resend requests,
fail over to another server host, etc. (3) Just before cbrdrmansferred to the target component. The
component is ready for the invocation, but also for otheraip@ns such as reading and writing state.

If the caller is replicated as well as the server, then theeet&@o replication algorithms in this
scenario. At point 1, control is still in the domain of theledt replication algorithm. At point 2, even
though execution is still on the calling host, logical cohtrelongs to the callee’s algorithm. In particular,
if the stub detects a server failure, it can fail over to aapterver host. The failover mechanism depends
entirely on the server’s replication algorithm, not thelex®d. (We indicate the domains of the two

Replication Tools Final 7

ADAPT: Middleware Technologies for Adaptive and Composablerbisted Components 1ST-2001-37126

algorithms with shading.)

The replication algorithm expresses the logic at each dfelpoints by implementing an interface.
The framework API defines a “local” interface, for logic irettocal server, and a “stub” interface, for
logic referring to a remote server. When the framework cepts execution at points 1 and 3, it passes
control to the local interface, implemented respectivglyre replication algorithms of the client and the
server. At point 2, it passes control to the stub interfadackwvruns on the caller but provides invocation
logic for the server's replication algorithm. For instaneg point 3, when a component is about to be
invoked, the AMAPT framework calls a special methadl | in the local replication interface taking the
request and the component handle as input. The replicatjonitam, if it wants to execute the request
on the component, it calls the corresponding method of tihgpoment handle with the request as input
parameter. The component handle performs the call on thhespanding component and returns the
response to the replication algorithm. The replicatioroatgm can do additional work (e.g., replicate
state), and then return to the framework with the response.

In an EJB invocation, the stub interface is actually dowdézhfrom the remote server during EJB
lookup. In a web service invocation, though, the client camownload code from the server (and would
not trust it if it did). In a real web-service applicationreer-specific logic on the client side would be
spelled out in the service contract, and implemented by lieatc For convenience in prototyping,
though, we maintain the distinction between the two intaraeven with web services.

For EJBs, we distinguish two interception points on the eeside, that is, 3 is split into 3a and
3hb. 3a comes before the component reference has been ks8keaking here allows the replication
algorithm to instantiate the component itself, if necegs@he second point (3b) comes after all the EJB
properties, such as security and transactions, have beep.sat this point, the replication algorithm
can get and set the component’s state, attach a listenee toaiisaction, etc. For web services, there is
no useful distinction to be made between these two pointsuse the invocation model for Axis objects
is much simpler than for EJBs. Thus, we provide interceptinly at 3b.

2.2.3 Requests and responses

In the ADAPT invocation API, aequestis passed to a component, yieldingesponse Generally,
request and response are opaque to the replication algoritlowever, in a request, we allow the repli-
cation algorithm to read the name of the method that is beingkied (or, for a web-service component,
the operation). This permits the algorithm to classify thetmods of a component, and treat them differ-
ently. For example, if it has access to more information abwiapplication (perhaps an extra descriptor
provided by the developer), it might distinguish betweedrenly and read-write methods.

When the invocation completes normally, the response sudates the return value (or, for a web
component, the SOAP response). In this case, the replicatgorithm cannot examine the content.
When the invocation throws an exception, though, this igyea in a special response which provides
the details of the exception and identifies its source. letkeeption was thrown by the component itself
(developer-written code), the replication algorithm ddaimply pass the response back, where it will
be handled by the calling component. If the exception isairby the system or framework, for example
when the server crashes, the client-side replication cadecatch this and “fail over” to another server
before returning to the caller. If the exception is thrownthg replication algorithm, the replication
algorithm is free to examine the exception details and leati@m as it chooses.

Both requests and responses can be tagged with “header&seTdre arbitrary key-value pairs,
which are transmitted along with the content of the mesdagfethey are visible only to the replication
algorithm. The key must be a string; the value may be of argsdlaat can be serialized in the invocation.

Replication Tools Final 8

ADAPT: Middleware Technologies for Adaptive and Composablerbisted Components 1ST-2001-37126

A common use for headers is to tag each request with a uniquediler to guarantee that each request
will be executed exactly once, despite retransmissionamimunication failures.

2.2.4 Transactions

J2EE models transactions with a standard API ([Sha03],tehd). This defines a transaction manager
which is called by clients, application components, andstever itself, to begin and end transactions

and to register participants (in case of 2-phase-commit)d A defines a transaction, which may be

associated (one-to-one) with a thread. If so, transadtioperations in that thread, such as database
access and EJB invocation, are logically contained withénttansaction.

To let the replication algorithm follow the association ofigponent invocations with transactions, we
provide two framework methods. If the bean uses contaireraged transactions, then at interception
point 3b, the transaction will already have been associattdthe thread. The algorithm can look it up
through the transaction manager. If the component managesactions itself, through direct calls to
the coordinator, the framework notifies the algorithm tigloa callback.

To track the later commit and rollback of a transaction, #@ication algorithm may attach a listener
in case of 2-phase-commit, using one of two interfaces defayeJ2EE. One interface is notified after
the transaction has committed or rolled back; another Hgtparticipates in the two-phase commit.

If the replication algorithm wants to intervene more adjivim local transaction processing, the
framework allows it to “wrap” the entire transaction managatercepting every transactional event. It
may choose to pass the event on to the underlying transao@mager, or to perform its own distributed
logic, or both.

Another approach might have been to open the internals afahsaction manager to the replication
algorithm. However, J2EE does not define these internalhis@approach would have meant choosing
a particular transaction manager implementation.

2.2.5 EJB lookup mechanisms

We also allow the replication algorithm to intercept thekiop and instantiation mechanisms of EJB even
before the component itself is created. First, J2EE definesnaing service, JNDI. Each component
is registered with the JNDI service of its local server. Talfthe component, the client connects to
the service and looks up the component’s name. We allow thetdtub to redirect the JNDI lookup
allowing the replication algorithm to provide a custom igplentation of the interface. Second, the JNDI
lookup yields the home interface for the component, whidvisles methods to create new instances and
to find existing ones. The invocations of these methods &secigpted on both the client and server sides,
at points 2 and 3. On the client side, the replication algoritnay redirect the calls to another server;
on the server side, it may perform related actions (such ploylment) before allowing the server to
proceed.

2.2.6 Deployment

A component cannot be instantiated on a server unless ipleykd there, that is, its code, configuration,
etc., are available. Before replicating components acaodsister, an algorithm must ensure that they
are deployed on all servers.

In J2EE ([Sha03], chapter 8), components are deployed mivariles, with a specified filename ex-
tension and internal structure. Typically, this file is ‘idleted” to a server by being copied to a specified
directory. The server checks the directory at startup, anelgaular intervals afterward.

Replication Tools Final 9

ADAPT: Middleware Technologies for Adaptive and Composablerbisted Components 1ST-2001-37126

Our API provides a simple model for deployment informatidiach component archive is repre-
sented by an identifying handle and a content object, whachbe transmitted together or separately. At
startup, the replication algorithm can query the framewforkall the units that are currently deployed.
During runtime, the framework notifies the replication altion whenever a new unit is deployed. The
algorithm can transmit the handle to its peers, which carvtbsther the handle is deployed locally. If
not, they can deploy it through the framework, by providihg handle and the content object.

2.2.7 Furtherissues

The framework provides a server address class that enesgsuhe |IP address and ports for a server.
The replication algorithm can share addesses, and sendoé agdresses to the client using response
headers. The framework also provides suspend and resurhedseb block and unblock requests on
the local server. They can be used if, e.g., state transéstsi® block request processing for the time of
the transfer.

2.3 Implementation

We have implemented the replication framework by buildindhe open-source J2EE server JBoss [JB0o03].
For web services, we used the SOAP engine Axis [Apa03], wisiaitegrated into JBoss. In each case,
the existing architecture provides hooks for intercepéingd restart invocation. JBoss’s EJB implementa-
tion is structured around “interceptors”, a pattern whigbuilt up into invocation “stacks” described by
a configuration file. Axis supports the handler model definedAX-RPC [Chi03]. A configuration file
defines the sequence of handlers to be executed before eesmrguest is finally delegated to the service
object. We did not modify any of the Java source files in thes3Bar Axis distribution; instead, we
modified the configuration files, inserting our own interceptand handlers into the existing invocation
paths. This will make it easier to port the framework to fetuersions of JBoss and Axis.

The performance of the framework was evaluated indiviguedid performance results are presented
in [BBMT04]. Section 3 is based on the framework. It includes a pevémce analysis which also
evaluates the overhead of the framework.

3 EJB Replication

So far, we have developed two independent replication itgos. One algorithm considers EJB replica-
tion. Clients access EJBs through the client RMI interfadei¢h is similar to the servlet RMI interface).
The second considers web-service object replication, riticpdar, how to replicate the Axis web-service
objects. So far, however, these objects may not call othiectsdor components. D13 will discuss the
integration of these two replication algorithms into ongoaithm where EJBs can be called from web-
services. In the current deliverable, we will discuss the algorithms separately. This section focus on
EJB replication, Section 4 will present web-service regilan. A detailed description and performance
analysis for EJB replication is provided in [WKMO04]. Heregwnly highlight the main features.

3.1 Model and Assumptions

Since methods on EJBs are usually called within the confdréiesactions, we have to keep transactions
in mind when we do application server replication. In paftc, we want our replication algorithm
to have two important properties. (i) The replicated sysstould provide the same degree sthte

Replication Tools Final 10

ADAPT: Middleware Technologies for Adaptive and Composablerbisted Components 1ST-2001-37126

consistencys the non-replicated J2EE in the non-failure case. In aeplcated system, if a transaction
commits, both the database and the EJBs within the applicagrver should reflect the changes of this
transaction. If the transaction aborts, if full state-gstency is required, none of the changes should
remain. Database systems provide efficient abort mechanigvithin J2EE, application programmers
can specify a&compensatiormethod for each business method that will be called by theesén case

of an abort, undoing the state changes performed within piplication server. If state consistency
is relaxed, only the database changes are cancelled, thgehin the EJBs remain. In a replicated
environment, we have to extend this definition. Changes BEp&rformed by a committed transaction
should be reflected on all server replicas and the databhaages of aborted transactions should not
remain on any server with full state consistency, and shbeleflected in all replicas with relaxed state
consistency. (ii) The system should provideactly-oncetransactions, i.e., as long as the client does
not crash, a transaction is executed exactly once (if tlmicrashes the semantics shouldabenost-
once. That is, even if a replica crashes during the executiontdrssacton, the others will continue and
terminate the transaction as if no crash had happened.

The implemented algorithm makes a couple of assumptionsadsieme that the nodes running ap-
plication servers can fail by crashing (no byzantine fai®)r We assume reliable, asynchronous commu-
nication and no network partitions. The algorithm in thetrsction is able to handle network partitions,
and we believe that we can use a similar mechanism for the parpese. Furthermore, we assume both
clients and database do not crash and the connection totdieeda is reliable. Of course, our final goal
is to provide web-service access to the EJBs, and web-geclients can easily fail. Such failure can
easily be handled by simply not sending a response to thet.clections 6 and 7 discuss how database
replication approaches can make databases reliable. Tdgration of a replicated database with the
replicated application server is topic of D13. The replaabf clients is currently not considered but we
might considers this in future work.

In regard to the application server, the current implent@rtanakes a couple of assumptions, some
of which will be relaxed in the near future. (i) We assume bzitbnt and EJBs (except of SLSB) follow
the typicalrequest/replyprotocol. The caller of an EJB submits a request to the EJB,isiblocked
until it receives a reply. This is a typical programming mip@dad hence, we believe it is not a severe
restriction. Consequently, SFSBs do not need any conawyreontrol since they are associated with
a single client with at most one outstanding request. (ii)assume CMT where all methods have the
transaction attribute set tequired Our current efforts eliminate this restriction. (iii) Iheé description
of this deliverable, we assume that a regular J2EE serveéhdui replication) correctly handles state
consistency and at-most-once execution in the failure-fri@se. The case for relaxed consistency can
be handled with an easy extension of the algorithm but istedhifior space reasons. (iv) If the J2EE
server crashes, the J2EE server’s state and its connettiding database will be lost, and the database
aborts all active transactions. That is, the database iosntiae changes of all committed transactions
but no changes of aborted transactions or transactiongéaatithe time of the crash. We tested with
DB2 that this database behavior is, in fact, true. (v) We mssthat J2EE will eventually give a client
a response (either the application dependent response @xcaption if the server crashes). This is
standard behavior of J2EE. (vi) Finally, we do not discussdhse where a transaction accesses more
than one database. In principle, our algorithm can hande ffhe current implementation, however,
does not provide the functionality since we have encoudtsoene problems with the XA interfaces of
the database systems.

Replication Tools Final 11

ADAPT: Middleware Technologies for Adaptive and Composablerbisted Components 1ST-2001-37126

Application server

Transaction Manager
i

Client
RMI Requestr

Figure 3: Typical Execution Flow of a J2EE server

3.2 Replication Algorithm

Our replication scheme uses passive replication to allawdeierministic execution, and to avoid redun-
dant computation. For EBs, we choose cold replication sihemges are always written to the database
at commit time by default. SFSBs use warm replication to@ehfaster failover, and alleviate the load
on the database. Group communication (GCS) is used for tinmope (see D2). Since our main goal is
state-consistency, we use eager replication. Any lazyogmbr makes non-determinism hard to handle
and typically does not allow for a generally applicable éstesit solution. We split the protocol into five
different parts. Thelient protocolexecuted at the client side is responsible for resubmitgiests in
case of server crash. At the server sit@rianary protocolruns at the primary and laackup protocol
runs at the backups during normal processing. Furthernadaegiover protocolruns at the new primary
when the old primary crashes, andeaovery protocols used when new replica joins the replica group.
Currently, there is only one primary executing all requésprinciple, requests of different clients could
be executed at different primaries to allow for load balagciWe are currently implementing this exten-
sion. Due to space limitations, we keep the protocol desoripather high-level. The interested reader
is referred to [WKMO04].

3.2.1 Client protocol

The basic task of the client protocol is to forward a clierquest to the current primary. The client

protocol maintains a list of server replicas, and a poiragghé replica it believes is the current primary.

New server lists are piggybacked by response messagesmirttary. The client protocol also attaches

unique request ids to requests. If the response to a requastaxception indicating a server crash, the
client protocol asks each server in the server list whethisrthe new primary and resubmits the failed

request with the same id to the next new primary.

3.2.2 Primary Protocol

Let's first recall the execution logic of a container managi@hsaction in a regular J2EE model as
depicted in Figure 3. When the container intercepts a cligmiest, it first calls the transaction manager
(T M) to begin a new transaction, then forwards the request t&deand waits for the response, then
calls theT'M to commit the transaction, and finally returns the respoogbd client. Each call to an
EJB carries the identifigrrid of the transaction that is associated with this call.

The primary protocol extends now this basic scheme. For esqiest, it keeps track of its id, the
associatedxid, the response to the client when existing, and a list of \gu&JBs. Areplication
manager RMintercepts the following actions. (i) It intercepts thegincall to theT M to keep track
of thetzid associated with the request. (i) It intercepts requesil®s. When a client request comes

Replication Tools Final 12

ADAPT: Middleware Technologies for Adaptive and Composablerbisted Components 1ST-2001-37126

in, it first checks whether already a response for this rdgedsts. If yes, the response is returned.
Otherwise, the corresponding action on the EJB is execaiedl if the EJB is updated, the RM keeps
track of this (state changes are detected by comparing pcepast state). The response created by the
EJB is kept together with the request in a hashtable. Thislis done if it is the response returned to
the client (note that subrequests create sub-respongasetithnot be kept). (iii) The RM also intercepts
commitrequests. Acommittingmessage is FIFO multicast containing, among other, regresgionse,
state of all changed SFSBs, identifiers of all changed EB$same other things. A marker is inserted
in the database containing theid. When it is guaranteed that all backups have received theages
(uniform reliable delivery), the database transactionoisimitted, and response is returned to the user.
A committedmessage is multicast to the backups to speed up failovengested for correctness). We
will discuss transaction abort later.

3.2.3 Backup protocol

The backup protocol used during normal processing is dedigm put as little load as possible on the
backups so that they can be used for other purposes, toortioybar, it does not immediately apply all
state changes. An EJB might be changed by subsequent tiiansaeapplying all these changes would
waste resources because at the time of failover, only thetat® is relevant.

When the backup receivescammittingmessage it temporarily stores it in a queue. Upon receiving
the correspondingommittedmessage, theommittingmessage is parsed, and the request/response pair
stored in a hashtable. For all EJBs listed in the messadyifltave not yet been initialized, this will be
done. Additionally, for each existing EJB, the last statkeipt as presented in the message (not applied
to the bean).

3.2.4 Failover protocol

When a backup receives a view change message from the GG®chkscwhether the current primary
is still member of the view. If not, it determines whethersithe new primary (using any deterministic
mechanism). If it is the new primary, the failover protoctarss. During failover, client requests asking
whether this is the new primary, are blocked. Once failogerompleted, the replica will confirm that it
iS now primary.

A simple failover protocol does the following. For eacbmmittingmessage for which no corre-
spondingcommittedmessage was received, we check whether the correspondimgattion has com-
mitted at the database or not. For that, we check whether wdHacorrespondingxid marker in the
database. If we find the marker, the database transactiocohamitted, and hence, the changes on the
EJBs indicated in the message have to be considered. Ififwoanarker, then the primary crashed after
sending the&eommittingmessage and before committing the database transactioceHee discard the
content of the message. Then, for all initialized SFSBs, etdle state to last recorded state. For all
initialized EBs, we load the state from the database (canobe dpon first request on this EB). Then,
the replica switches to the primary protocol.

At this time, we briefly want to discuss why the combinationpafnary, backup and failover pro-
tocols guarantees state consistency and exactly-oncetexen case of primary crash. Recall that we
assume that if the primary crashes all database transadiidive at the primary will be automatically
aborted at the database. The primary might crash at sevacalspduring the execution of a transaction.
(i) If the primary crashes before sending thenmitting message, the backups do not have the SFSB
state changes, and the database transaction will be abditésiprovides state consistency. When the

Replication Tools Final 13

ADAPT: Middleware Technologies for Adaptive and Composablerbisted Components 1ST-2001-37126

client resubmits the request to the new primary, it will siynpe handled as a new request. (ii) If the
primary crashes after sending thenmitting but before committing the transaction, the backups have
not received theommitted message. Hence, at failover, the new primary checks at thbakse and will
detect that the correspondingid cannot be found in the database. Hence, it knows that theatcéion

has not committed, and will disregard thenmitting message. Again, the system behaves as if the
request had never been processed. (iii) If the primary #ikr committing the database transaction but
before sending theommitted message, the backup will again look for the marker in thel@dea. This
time, it will find the correspondingzid. Hence, it will consider the state of the EJBs in thevmitting
message. Again, application server and database have isteohstate. When the client resubmits the
request to the new primary, it will not be re-executed butrésponse will be immediately returned. (iv)
When the primary fails after sending themmitted message, the backup does not need to check for
the marker to know that the transaction has committed. Qyaorihm provides exactly-once execution
and state consistency by using the marker mechanism tawatewhether the database transaction has
committed, and by resubmitting client requests if the prin@ashes before the client receives a result.

Our failover implementation does not exactly follow the eggzh above but only lazily applies state.
That s, during failover, we do not set the state of all beamstead, we switch to normal processing once
all committingmessages are handled. Then, the state of SFSBs is lazilyheeewer a bean is accessed
for the first time by a new request. This procedure slows daguest execution shortly after failover
but makes the failover itself much faster.

During normal processing, a transaction can abort at Seplaees, e.g., when th&M executes
the commit request or in the middle of the execution of an Ed&hod. Depending on the degree of
state consistency this will require to send according mgation to the backups in one or both cases.
The important thing is that if the transaction aborted beeanf regular application semantics, if full
state consistency is requested, none of the replicas mtll ittee EJB state changes triggered by this
transaction. For space reasons, we do not discuss the sagenarios in detail but refer to [WKMO04].

3.2.5 Recovery protocol

When a failed replica recovers or a new replica joins it h&@sbreceive the current state, and then will
become a backup. Currently, our implementation requirasahleast one backup already exists. Thus,
when a new or failed replica joins, one of the existing baskugferred to as theeer replicawill send its
current state to the joining replica. We use an agreemeiagrbamong the backups to agree on the peer.
The chosen peer generateseaoverymessage containing atommittingmessages, all request/reply
pairs, and the necessary information about all changed Ei#ig point-to-point communication. While
waiting for therecoverymessage, the joining replica might have already receivessayes from the
primary (it starts receiving messages when the GCS delihersiew change). A special mechanism is
used to determine whether the content of some of these ness@aglready contained in thiecovery
message sent by the peer replica.

3.3 Performance Evaluation

We implemented the algorithm based on the ADAPT framewokintpadvantage of the interceptor
points, and the set/get state methods on beans. As group woication system, we used JBora on top
of Spread (see D2 for details).

We evaluated our system running three different suites péements. First, we use the ECperf
benchmark [Sun03] to evaluate the performance on a “regliGgiion and compare it with JBoss’s

Replication Tools Final 14

ADAPT: Middleware Technologies for Adaptive and Composablerbisted Components 1ST-2001-37126

450 / / 2000 T T
200 // / / 1800 —e—Replicated Jboss
/f/ f/ / @ —=— Clustered Jboss
350 2 1600 - —a—Jboss+Framework
. = . -
2 200 M E 1400 H —<—Non-Replicated Jbo:
S 1]
g 250 S = £ 1200 i
£ el)
‘s 200 e el & 1000) i
g o » E 800 =
=3 150 v —a— Replicated Jboss 8 600
£ 100 —%— Clustered Jboss 2 400
—x— Jboss+Framework o
50 —s— Non-Replicated Jbossf| ‘3 200
0 +———————————————— @ 0
1 3 5 7 9 11 13 15 17 19 0 2 4 6 8 10 12 14 16 18 20
Injection Rate Injection Rate
(a) Response Time (b) Throughput

Figure 4: ECperf Comparison

existing clustering technique. For this case, we used JB@s8. A second test suite presents a series
of micro benchmarks that show the performance for diffecemiponents (SFSB vs. EB), and database
access patterns. The third experiment suite evaluates/éail All tests were run on a cluster of PCs
(3.0 GHz Pentium 4 with 1 GB of RAM) running RedHat Linux. Thenfiguration consists of one
machine emulating clients, one machine running the weleséifineeded), two machines running JBoss
application server instances, and one machine running BRRiIadatabase system.

3.3.1 Evaluation based on ECperf benchmark

ECperf [Sun03] emulates businesses involved in manufagiusupply chain and order/inventory man-
agement. The application is split into four domains: custgmmanufacturing, supplier domain, and
corporate. The main configuration variable is trensaction injection rat€IR) which refers to the rate
at which a specified subset of business transaction recaresisjected into the system.

In this experiment, we evaluate the following architecsurgl) A regular, non-replicated JBoss
server as baseline for comparison. (2) The JBoss serveding the framework without the replication
protocol to evaluate the overhead of an abstraction layeulor reusability and platform independence.
(3) Two application server replicas using our eager refiioaprotocol. (4) Two application server
replicas using JBoss’s own clustering solutforFor both (3) and (4) we did not take advantage of load
balancing, and submitted all requests to one server.

Figure 4 shows the results of the experiment measured ogestéady state phase of the run (the
ramp-up and ramp-down phases are ignored). Figure 4(a)sstimvaverage response time for order
entry transactions of the customer domain. At low throughthe framework adds around 10 ms to
the non-replicated JBoss, our protocol adds 25 ms while J8atustering method adds around 100
ms. This gives an overhead of around 25% for our protocol fhiegramework, and 70% for the JBoss
clustering. The latter performs so badly because it serade after each method invocation while our
solution only communicates at the end of the transactiona Asmparison, in [MMSN99] the authors

1JBoss's clustering solution [JBo] uses passive, warm, agerereplication. Each replica can act as a primary for aclie
session. If a client request triggers execution on sevéatéfsl components, state transfer takes place indiviglasice ex-
ecution on the component has terminated. Although eagedblgms occur if state propagation for some of the components
was successful but the primary fails before committing thegaction at the database. In this case the backups have a pa
tially replicated state while the database transactiomtato Hence, neither state consistency nor exactly-onceusécs are
provided.

Replication Tools Final 15

ADAPT: Middleware Technologies for Adaptive and Composablerbisted Components 1ST-2001-37126

indicate around 15% overhead for FT-CORBA (primary-bagktgmpared to non-replicated CORBA.
With increasing IR, the response time in all systems in@gaseadily until saturation point. The gap
between non-replicated and replicated JBoss increaggglglbut steadily, while it remains nearly the
same for the clustering approach until around 11 IR beyondiwihbecomes significantly worse. More
information about the saturation point can be found in Fegi(b). This figure uses the averdyesiness
operations per minutéo represent the maximum achievable throughput when thendReases. The
maximum in each curve shows the system shortly before damrarhe replicated server is saturated
at an IR of 15 (due to CPU overhead). JBoss’s clustering a@sirat 17 IR (also due to CPU) while
the non-replicated JBoss saturates at 19 IR (in this cas@,i®Be bottleneck). The reason for earlier
saturation of our approach compared to the clustering agpras higher CPU overhead (keeping old
responses to guarantee exactly-once, keeping informdtidng transaction execution in order to send
all state in a single message).

In summary, we believe that our approach provides accepfarformance considering the strong
consistency guarantees that it provides. It comparesdal®with JBoss’s clustering mechanism. Never-
theless, the overhead is not negligible. We believe, howyévat more “engineering” work in optimizing
our in-memory data structures could lead to further impnoet.

3.3.2 Component Analysis

In order to better understand where to start such optinoizatiour second experiment suite looks at
the overhead of replication for different components anthponent combinations. We evaluate cases
(i) where no database access takes place, (ii) where thbadatdés accessed but no conflicts occur, and
(iif) where database conflicts occur. We tested with only BF&d with a combination of SFSB and
EB. Detailed results are given in [WKMO04]. In case (i) exéontis very fast both for the replicated
and non-replicated system, and less than 10 ms. Howeveovidteead of replication is nearly 100%
and a replicated system has only half the maximum achievhideghput than a non-replicated system.
Since no database access takes place, the system is cdynpReté bound. Since the the non-replicated
system takes half the time to execute one request compaitiesl teplicated system, it can execute double
as many requests before saturation. In (ii) the replicabi@rhead is around 20%. Response times are
generally higher. The saturation point of the replicatesteay is at around 75% of the saturation point
of a non-replicated system. In (iii), response times and.naakievable throughput are generally much
worse than in (ii) due to blocking behavior at the databasée felative behavior of the replicated
system compared to the non-replicated system is, howewgtasto case (ii). In all cases, using EBs
slows down both replicated and non-replicated systemsniiasi ways compared to a system with only
SFSBs.

3.3.3 Failover

We evaluated the failover costs after different runningetirof ECPerf. Since failover time only depends
on the number o€Eommittingmessages for which rmmmittednessage was received, it is independent
of the running time before the crash but depends on the loadlgtbefore the crash. If the load was
high, manycommittednessages are missing. At medium loads, the failover timean@asd 100 ms, at
high loads it rose up to 160 ms. This can be considered as astydilover.

Replication Tools Final 16

ADAPT: Middleware Technologies for Adaptive and Composablerbisted Components 1ST-2001-37126

3.4 Related Work

Most J2EE products provide some form of EJB replication. Mégfic [BEAO2] uses passive, warm, and
lazy replication. A single primary server processes retgiasd propagates the state soon after returning
the response to keep replicas as consistent as possibles'dBtustering solution [JBo] uses passive,
warm, and eager replication. Each replica can act as a prifoal client session. If a client request
triggers execution on several stateful components, statsfer takes place individually once execution
on the component has terminated. Although eager, probleas i state propagation for some of the
components was successful but the primary fails before ddimgithe transaction at the database. In
this case the backups have a partially replicated stateevitnd database transaction aborted. Pramati
[Pra02] uses passive, cold, and eager replication. Eaditaegan be the primary. State changes are
immediately written into the database. If the primary cegsin the middle of execution, the database
transaction aborts and with it the state changes of theagtigh server. None of the above solutions
provides exactly-once semantics, and only Pramati guseardtate consistency.

As an example of replication in CORBA, the Eternal system [M801] is based on the FT CORBA
architecture [OMGOO]. Eternal supports active repliaattmd both warm and cold passive replication.
Determinism is required even for passive replication sihcses lazy propagation. The primary repli-
cates the state to backups periodically in form of checkpoiBetween two checkpoints, all messages
from clients and the database are logged. At failover, the prémary first restores the state of the last
checkpoint, and then replays logged requests. During yeplatgoing messages are suppressed. To
guarantee exactly-once semantics at the database levethaket al. [ZMMS02, ZMMSO03] extend the
Eternal system to use a distributed out-bound gateway twadp transactional context. Phoenix/COM+
[BLWO2] is based on .NET using passive, cold, and lazy rafitie. It has similarities to the Eternal
system. States are replicated periodically, and requesteelen two checkpoints are logged. However,
it distinguishes nondeterministic events from deterntimisvents. For nondeterministic events, it uses
eager replication to avoid the problems that exists in Eflerhlowever, it is unclear how to determine
whether an event is non-deterministic or not. Neither Etlenor Phoenix/COM+ explicitly discuss state
consistency.

There are also some general solutions that are not develpipigid the context of a specific appli-
cation server architecture. e-Transactions [FG00a] eftactly-once semantics for stateless application
servers. When a replica of an application server executequeest, it inserts the response and a marker
into the database. If the server crashes before sendingghense and the client resubmits the request to
the new primary, the new primary checks whether a markeihfsrrequest exists in the database. If yes,
the response will be retrieved and returned without re-gxeg the request. X-ability [FGOOb] provides
a general replication solution for stateful servers, hawet is presented on a very abstract level.

Eternal, Phoenix/COM+, e-Transactions, and X-abilityalenplemented in different environments
with different conditions. In our approach, we have takeveathge of some of J2EE’s properties leading
to a different solution.

3.5 Current Work

Our current work attempts to enhance the current systemviaraeways. (i) We are extending the
system to handle network partitions. This is quite simplié network partition occurs between client
and server cluster. However, when it occurs between therserthings are more complicated because
then a client might resubmit a request to a backup or a backaprbes a new primary although the old
primary has not failed. (ii) We are implementing the alduritfor relaxed state consistency. (iii) We

Replication Tools Final 17

ADAPT: Middleware Technologies for Adaptive and Composablerbisted Components 1ST-2001-37126

want to implement the version which allows multiple dat&bi@astances and a 2-phase-commit protocol.
(iv) We are evaluating the impact of different failover ségies and the costs of recovery. (v) We are
looking into more advanced transaction models. For ingtaactransaction can span more than one
request, or a request can span more than one transactidme first case, failover must be able to handle
transactions for which a client has received some but noégfionses. In the second case, failover must
be able to handle requests for which some but not all traiosechave committed. These transactions
can be BMT or CMT. We are also planning to support the ONT madskribed in D4 (or rather, the
successor of D4). (vi) The system has to be extended to harebleservice interfaces. Currently, only
RMI clients are supported. (vii) We will provide a module tonoect the replicated application server
with one of the replicated database systems we have dewklope

4 Web-service Object replication

The second algorithm developed within the#pT framework focuses on the replication of Axis-based
web-service objects. While it is similar in many regardshie EJB replication algorithm described in

the previous section, the focus of the work has been quiterdift. A detailed description of the work

presented in this section can be found in [BPAO4]. We onlyrsanize the results here.

4.1 Model and Assumptions

We will outline the model and assumptions by pointing out ¢benmonalities and differences to the
EJB replication algorithms. In the web-service replicataigorithm, the components to be replicated
are Axis web-service objects. These objects can be sess@mar and maintain state of the lifetime of
a session. In this case, each object is always associatedgihgle client. The web-service algorithm
currently completely focuses on the replication of thiseabjstate. That is, execution of methods may
only change the state of the object and must not have any fete eutside of this object. In particular,
calls of this object to EJBs or a database are not considered.

While this model is somehow simpler than for EJB replicatioa database access, no subrequests,
no transactions), the properties to be supported are daiitas (i) The replicated system must provide
the same consistency as the non-replicated system in aailarefcase. In particular, the current imple-
mentation provides sequential consistency (given anyfsgiarations, the execution of these operations
produces the same results as if these operations were egénigome sequential order; and, the opera-
tions for each client appear in this sequence in the same oraéhich they were issued by the client).
(ii) Exactly once execution is provided. If the replicatet/ieonment receives multiple copies of a given
update request, the operations should only be executed dioeeover, the system responds to each
copy of the request with the result of that only execution.

Compared to the EJB algorithm, the web-service algorithoviges correctness not only in the case
of server crashes, but also in case of network failures. bidghmight partition between the client and
the server replicas, or between the individual server ecapli Handling network partitions of the first
case is especially important when clients access the sethifough the Internet which is the typical
scenario for web-services. Networks partitions in the sdocoase can occur if the servers reside on
different subnets within a company. A crashed process meyves as a new process, and partitions
are eventually repaired. The system is asynchronous imthbunds are assumed on communication
delays or relative speed of processes. Message corruptbhyeantine failures are excluded.

Objects export read and write operations. Write operatiwmaseither assumed to be idempotent nor
commutative. The application programmer is assumed to Egpeeal naming mechanism to indicate

Replication Tools Final 18

ADAPT: Middleware Technologies for Adaptive and Composablerbisted Components 1ST-2001-37126

whether an operation is a write or a read. The replicatiommaed takes only place for write operations.

4.2 Replication Algorithm
4.2.1 Client Protocol

The basic task of the client protocol is to forward a cliemuest to any server replica. The addresses
of server replica can be obtained from external naming sesviFurthermore, for each object belonging
to the client, the client keeps a counter indicating the nemab updates performed on the object. This
counter is piggybacked with each request sent. This allbesérver replica to check whether its copy
of the object is up-to-date. The client protocol attachesigue request ids to requests. The response
to a request can be OK, and then is returned to the client.nliatso be UNABLE indicating that the
contacted server replica does not have an up-to-date wen§ithe object or is not allowed to currently
perform operations. Furthermore, it can be UNKNOWN indiwgtthat another server replica might
have executed the response but this replica does not havegpense. In the last two cases the client
protocol might either try another server replica or give up.

4.2.2 Server Protocol

Each server replica keeps for each object the number of epdaat have been performed on the object
(as far as the replica is aware of), and the last response tiént.

Group Membership Servers communicate with each other using group commiumicaBee D2 for
details. We assume that the group communication systenide®yprimary-partition membership, i.e.,
one in which all group members have the same perception ajrthg membership. For example, in
case the set of replicas splits in two or more disjoint setswbge of a network failure, then the GC-layer
automatically selects one of these sets to be the next vievicaaibly expels from the group the replicas
that happen to be on the wrong side of the partition (by deligeto these replicas a special "shutdown”
view change). All replicas receive view changes in the sardero Our prototype selects the primary
partition as the one containing a majority of statically wmonumber of replicas. Replicas that enter the
primary partition (i.e., those that recover after a failaré¢hat were isolated because of a network failure
that has repaired) can execute client requests only aftgiiritg the up-to-date version of all relevant
information through a procedure called state transfer.

Normal Processing Each client is connected with one single replica at a timg,RsaR can execute

a request submitted by the client only if the request ide#ifin object for which R holds a version of
the object that is more recent than the latest version aeddssthe client. It first checks whether the
replica is “sufficiently up-to-date” for the specified oljedtf not, it responds to the client by declaring
that the replica is UNABLE to execute the request. Otherwifséhe request is a read, it executes the
request completely locally and responds. If the request igoalate, the replica first inspects whether the
replica is in the primary partition and the state transfethiat replica has completed. If this is not the
case, the replica responds to the client by declaring tieateplica is UNABLE to execute the request.
Otherwise, the replica inspects whether the update redguastuplicate or is fresh. If it is a duplicate,
it sends immediately the result to the client, without cengyout the update again. If it is fresh, it (i)
executes the update on a copy of the object; (ii) propaghteadw version and associated result to the
other replicas using total order uniform reliable multicagits to receive the message locally, and then

Replication Tools Final 19

ADAPT: Middleware Technologies for Adaptive and Composablerbisted Components 1ST-2001-37126

sends the result to the client. A client that does not redbigeesponse to an update or that observes the
connection breaks before receiving such a response, mayitsthie very same request immediately, to
either the same replica or another one. There is no hypsthdgtsoever on the retransmission policy
used by clients.

The reason why each update is performed on a copy of the dbjésicause the propagation at
step (ii) might fail. In particular, the replica might issaanulticast and then receive a“shutdown” view
change before receiving the corresponding message. Idbis the replica is forcibly expelled from
the primary partition and it cannot tell whether the remi@a the primary partition have received the
message, and thus updated the object accordingly, or nibt dobcomes are possible, depending on the
protocols within the GC layer and on "when” the failure ogewl) . It follows that the replica must drop
the updated copy of the object and must respond an UNKNOWNSssta the client.

Recovery Finally, upon receiving a view change, a replica checks hdredny replica (including itself)
has just entered the primary partition. In this case, aligap in the primary partition execute a function
which triggers the state transfer from a replica with an ayoite version to all new replicas. It might
be impossible to determine whether there exists a replitia avi up-to-date version. This is the case,
e.g., when the group reforms after the primary partitiorseddo exist and at least one server replica has
crashed since the last existence of the primary partitiathSolutions require that each server replica
saves (part of) its state on stable storage, and are cyrmeoitimplemented. State transfer takes place
without suspending the execution of the service.

4.3 Implementation

The implementation described in [BPA04] and summarizetiénfollowing was based on Apache Tom-
cat. The algorithm has been implemented based on therA replication framework developed for
JBoss. The implementation described in [BPA0O4] was bas&gpache Tomcat without using the frame-
work. Each server runs an instance of Tomcat/JBoss and addeemon. Each server is also equipped
with two Java packages developed by us: JBora, that implenwem group communication interface
(see Deliverable D2); JMiramare, that implements the cafibn algorithm on top of JBora. JMiramare
is for its most part Tomcat-independent, i.e., it may be etett unchanged in other servlet containers
(this is the portion that has been totally rewritten for usthuwhe replication framework). Each client
is equipped with a small stub that includes within the retpi®e information required by the replica-
tion algorithm and that takes care of retransmissions aikdvar as appropriate. For the web-service
implementation, SOAP messages include a replication hdadstoring all necessary information. It is
possible that the WSDL description of web service contdiesitformation whether a method is a read
or a write.

4.4 Performance Evaluation

A performance analysis of the Tomcat-based prototype isngin [BPAO4]. The results refer to a ser-
vice consisting of 3 replicas, each placed on a Dell Opti@es260 (Plll 800 MHz, 512 MB) running
Windows 2000 Professional. Communication occurs throug®aMb switched Ethernet. We used Sun
Microsystems’ JVM 1.4.0 and Tomcat 4.0.6. We configured ¥id &xecuting Tomcat with -Xms128m
(initial heap space 128 MB) and -Xmx384m (maximum heap sj@@eMB). All experiments began
with a warm-up phase of a couple of minutes. Data collectathguvarm-up were discarded. We
simulated an increasing number of clients by running a plybavailable tool on another machine on

Replication Tools Final 20

ADAPT: Middleware Technologies for Adaptive and Composablerbisted Components 1ST-2001-37126

the same Ethernet (http://grinder.sourceforge.net).hEBanulated client constructs a request, waits the
response and sends the next request. Construction of astequalves parsing the response to the pre-
vious request. All the results below have been obtained tayifily out data collected during warm-up.
We have verified that the client machine was not the bottleireany experiment.

Salient results of this analysis include what follows. Eitssage of the standard Java serializa-
tion mechanism is likely to deliver poor performance. Thiscmanism leads to a rather verbose and
redundant description of objects. Since replication mdlesssy use of multicast communication, the
resulting overhead turns out to be excessive. Usage ofroimtd serialization procedures is therefore
highly advisable, and implemented in our prototype. Anpthieresting finding is that, with 100%-write
workload, the replicated implementation delivers a bdtteoughput than the non-replicated one (sin-
gle replica). This positive result was unexpected. In thdicated implementation each replica has to
participate in the execution of all requests (recall thataneeconsidering 100%-write workload). Thus,
we expected that the throughput of the non-replicated implaation (single replica) would be an upper
bound for the throughput of the replicated implementationfact, since receiving a multicast involves
a significant cost at the group communication layer, we thodige upper bound would not even be
achieved. This expectation turned out to be wrong. The reasbecause we underestimated the cost
of receiving and parsing HTTP requests, constructing andisg HTTP responses. In the replicated
implementation this cost is fairly distributed amongstliegs, each replica being responsible for one
third of the total number of requests. As it turns out from experiments, distributing this cost may
partly compensate the overhead intrinsic to replicatianalfy, we have verified that when the workload
includes “read” operations the throughput of the replidataplementation indeed grows. We expect
that when the workload is close to 100% “read”, the replidateplementation should exhibit a close-
to-linear scalability, i.e, a throughput closekdimes the throughput of the replicated implementation,
k being the number of replicas. However, we did not addresssttgnario in our experiments. Latency
results showed an increase of around 12 ms for the replicatet@m compared to the non-replicated
system. Most of this time is spent for the mulitcast. In outisg this was in increase of around 30%.
However, since in a real system the client is probably catetethrough a slow wide-area link, the 12
ms additional overhead will barely be recognizable by thentl

We want to point out that by making explicitly visible the nat of each operation (“read” vs.
“write”), this information can be exploited by the replicat infrastructure in order to improve per-
formance. When this information is not available, a repimainfrastructure can only handle each op-
eration as if it were a “write”, or perform expensive statenparisons, thereby introducing unnecessary
overhead.

45 Related Work

Our algorithm is such that the service stops being availalblen there is no majority of replicas that
are active and mutually connected. That is, when an exaessimber of failures occur, the service
stops responding to requests because it is no longer ableatargee state consistency and exactly-once
execution (in practice, the service will have to reboot aga imcarnation). While this feature is not
peculiar of our approach (e.g., [FGO01]), it is worth to ré¢hlt many replicated services take quite
a different approach, in which certain failures may causesystem to silently stop guaranteeing the
above properties — the system continues to respond but litavimr no longer satisfies one or both
of the properties, without any explicit notification of thact. As an example, consider the session
failover support in replicated servers based on IBM Web&pHE/AB+00]: the conversational state for
a client (i.e., an HTTP session) is kept in a database sharedl keplicas, so that it remains available

Replication Tools Final 21

ADAPT: Middleware Technologies for Adaptive and Composablerbisted Components 1ST-2001-37126

in case the replica connected with client fails; since sessiformation is accessed very frequently, a
caching mechanism is used to decrease the overhead relatathbase access; this mechanism is such
that, should a failure occur within a certain vulnerabiyndow, some updates already seen by the
client could be (silently) lost. As another example, coassbme recent implementations of distributed
data structures (DDS) [GBHCO00]. A DDS is an object (e.g., shhiable) partitioned and replicated
across several replicas. The service implementation etigires excellent performance and scalability,
is based on the assumption that the network between replmaes partitions. Should such an event
occur, the service could silently stop satisfying its cetgsicy criterion. While the above design choices
are sensible in many environments, in particular, where-gtithe-art performance and scalability are
essential, we are interested in exploring other desigrettdf$, more suitable for application domains
where it may be preferrable to eliminate the potential faomsistencies even at some cost in terms of
performance and scalability. Indeed, many environmentaal;meed state-of-the-art performance and
scalability [VVRB98] and leading research groups belidhet tit is time to broaden our performance-
dominated research agenda’[PB&].

5 Database Replication: An overview

For a long time, database replication has been consideredcatient solution to increase throughput
(more replicas can serve more requests), decrease redpoasddistribute the load), and provide fault-
tolerance. Replication, however, has the challenge ofazpgbntrol. When one replica is updated, the
changes have to be propagated and applied at the otheraeicd the different copies of the database
must remain consistent despite concurrent updates. Sthoolaectness criteria is 1-copy-serializability,
i.e., the concurrent execution of a set of transactions ewlifferent replicas should have the same effect
as a serial execution on a centralized database. As suditarepntrol has to be combined with or at
least must be aware of the concurrency control mechaniset tasdetermine the execution order of
operations at each individual replica. Early researchtgwls focused on fault-tolerance [BHG87], and
were seldomly implemented in commercial systems, whichtimadfered ad-hoc solutions violating
traditional transactional properties in order to achiegeeptable performance [Gol94]. A thorough
analysis by Gray et.al. in 1996 [GHOS96] claimed that exgstapproaches scale badly, and are not
suitable for modern applications. Their analysis reviveskarch in database replication leading to many
new solutions that attempt to eliminate the limitationsnped out by [GHOS96], while still providing
global serializability, e.g., [ABKW98, PGS98, BK®9, HAA99, BGRS00, KA0Oa, KAOOb, PMS99,
JPPMKAO02, ACZ03b, ACZ03a, CMZ03].

Database replication can be implemented at two levels, lesehwith its own advantages and disad-
vantages. The data replication tool can be implemented addleware on top of off-the-shelf database
systems, or it can be integrated into the kernel of a databagtem. In a middleware based approach,
the database system itself, often needs no changes. Insie&@nsactions have to be submitted to a
middleware layer which coordinates the execution on theldete replicas. This has the advantage that
replica control is an additional module and separated flercomplex database kernel. Additionally, it
might have the potential of being able to work in a hetereogerenvironment, although few solutions
support this. On the negative side, the middleware layetdesmplement concurrency control since it
has no control over the concurrency control module withandhtabase systems. Since the middleware
typically only has access to the SQL statements submittethdyransactions and does not know the
concrete tuples to be accessed by these statements, @rguoontrol is typically on a rather course
level, e.g., a table. If the middleware has a centralizedpmmant, e.g., a centralized schedule, this sin-

Replication Tools Final 22

ADAPT: Middleware Technologies for Adaptive and Composablerbisted Components 1ST-2001-37126

gle point of failure is an additional disadvantage. Als@ thiddleware is yet another indirection in the
execution flow leading to an even more complex architecture.

In contrast, when the replication tool is integrated inte tfatabase system, more options for opti-
mization exist. The replication tool can take full advamtay its access to other internal components
and the homogeneity of the system, and hence, is hopefullg efficient. For instance, it can directly
interact with the often tuple-based concurrency contrahefdatabase system, and does not need to im-
plement its own concurrency control mechanism. Furtheemdirect access to the tuples and/or logs is
given allowing for an efficient propagation of changed tgpl¬her advantage is that the replica tool
comes within the same software package as the databasengystking installation and usage easier.
Commercial systems are able to sell their replication meslat high price for exactly these reasons. As
its disadvantage, an integrated solution only works in adgeneous environment. Furthermore, it has
the challenge, that the replication tool should ideally badditionto the system without major changes
to the existing component. In particular, in case the ex¢drgystem runs in non-replicated mode, repli-
cation related code should not be executed and the semanticprinciple protocol of the centralized
system should remain unchanged.

We have developed database replication tools both at théiemidre layer and as integrated solution.
In the following, we will present both of the approaches audent activities.

6 Postgres-R(SI): An integrated database replication solion

6.1 Introduction and Overview
6.1.1 Postgres-R: the predecessor

A first version of Postgres-R was already developed in 200(nteégrated replication into the kernel
of PostgreSQL, version 6.4. At this time, PostgreSQL’s corency control was based on strict two-
phase locking. Postgres-R integrated a replication algorbased on group communication (GCS). The
execution is as follows. A transactidn, consisting of a sequence of read r(X) and write w(X) opereti
on tuples X can be submitted to any replica. This replicg slocal replica andr; is local at this replica.
All other replicas argemotereplicas for7; andT; is remoteat these replicasT; is first completely
executed at the local replica, and write operations ar@ctat within awvriteset At commit time, the
writeset is multicast to all replicas using the total orderitmast. All replicas now use the total order
delivery to determine the serialization order. Whenevar dperations conflict they will be executed in
the order the writesets were delivered. Since this is theesaall replicas, all replicas serialize in the
same way. No complex agreement protocol or distributedwwency control is necessary. In the locking
based approach of Postgres-R, when a writeset of a trams&Gtivas delivered and there was a local
transactionl’; whose writeset was not yet delivered and it had a read or wpégation that conflicted
with one of the write operations df;, T; was aborted. Iff; had already sent its writeset, the other
sites have to be informed about the abort. This guarantemgpyt-serializability. Furthermore, uniform-
reliable delivery is used to avoid lost transactions. Whendender receives a writeset itself it knows
that everybody else will or has received it. Only one totalesrmessage is sent within the transaction
boundaries. 2-phase-commit is avoided, and a transadiorc@mmit locally without waiting that other
replicas have executed the writeset. When replicas fal GRS informs the remaining replicas. They
simply can continue as a smaller group. This approach avoisy of the limiations pointed out by
[GHOS96], at least for local area networks.

While failures are handled transparently by the GCS, ragaegjuires to transfer the current database

Replication Tools Final 23

ADAPT: Middleware Technologies for Adaptive and Composablerbisted Components 1ST-2001-37126

state to the recovering replica. [KBBO01] proposes a suiteeobvery mechanisms for this purpose. In
[Cho03], one of these approaches is implemented into a nfelatee version of Postgres-R.

The PostgreSQL community showed great interest in PosRyré&fie project became an open-source
effort hosted at the GBorg website (http://gborg.posigtesy/project/pgreplication/projdisplay.php) in
a plan to move the prototype to a production mode system.

6.1.2 Snapshot Isolation

However, since the development of Postgres-R, Postgre®@Imoved to a new version 7 with a com-
pletely new concurrency control module. Now, PostgreSQeésdaot provide anymore classical seri-
alizability, but provides the isolation lev&lnapshot Isolation This is a very common isolation level,
implemented in similar way in Borland [Bor04], Oracle [Otd0and also offered by Microsoft SQL
Server. This isolation level can be implemented using Awdision concurrency control. Snapshot iso-
lation allows some non-serializable executions, but itvighes much more concurrency for read-only
transactions, and hence is very useful for read intensiydicapions. We can expect that even more
database systems will provide this isolation level in therfe. The basic idea is to keep several versions
of a data object. Read operations read from a committed &b of the database, and work com-
pletely independent from writes. Conflicts are only detédietween write operations. We denote an
object version to be committed at the time the transactiahdieated the version commits. Furthermore,
we define two transactions to be concurrent if neither teateith(commit/abort) before the other started.
A concurrency control system providing SI must obey theofglhg rules. (i) Each first write operation
w(z) of a transactiorf” on objectX creates a new version of, (ii) subsequent read(X) andw(X)

of 7" on X access the newly created version, and (iiiY &) of 7" on X not preceded by a/(.X), reads
the last version that committed befdfestarted. Finally, if two concurrent transactions writeamjX

at least one of them must abort.

6.1.3 Postgres-R(SI)

As aresult, we had to redesign Postgres-R’s replicaticorign to work with the new concurrency con-
trol method of PostgreSQL, v.7. Posgres-R(SI) has a similzitecture as the original Postgres-R using
a total order multicast. Also the execution model remaimsstime (first local execution, then sending
the writeset determining the global serialization ordgvhat is new is the integration of replica control
with the multi-version concurrency control algorithm offgreSQL, version 7. While the locking based
concurrency control of version 6 was encapsulated in a loakager, the current algorithm heavily de-
pends on PostgreSQL's multi-version storage system tactetate/write conflicts and determine the
snapshot of read operations. This required us to obtainaaletunderstanding of PosgreSQL's multi-
version system, and made it more challenging to extend RBE&QJ- in a modular way without really
changing existing components. In the following, we shodiljline our algorithm, its implementation,
and a performance evaluation we conducted. For more dgiaflermation, we refer to [WKO04].

6.2 Replica and Concurrency Control
6.2.1 Concurrency control in PostgreSQL

In PostgreSQL, each tupl& is assigned a unique identifier which is common to all versioh.X.
Each update creates a new versionXaf Concurrency control is a mixture of reading different abje
versions, performing checks, and acquiring exclusiveddok write operations. Each transactiéphas

Replication Tools Final 24

ADAPT: Middleware Technologies for Adaptive and Composablerbisted Components 1ST-2001-37126

two phases. In the execution phase it executes read and opetations. Whefl; performs a write
operationw;(X) on tuple X for the first time, it first performs &ersion checklIt checks whether there
is any concurrent transactidfy that updatedX and already committed. If this is the casgaborts.
Otherwise,T; requests an exclusive lock on. If the lock is granted]; creates a new version &f and
performs the update on the new version. WHeémperforms a successive write;(X), it simply uses
the previously created version. If there is already a I@gls request is appended to a waiting queue for
X. Upon being woken up by the transaction releasing the locKoff; starts all over again with the
version check. Wheff; performs a read operation(X), it either reads its own version if existing, or it
reads the version created by transacfigrsuch thatl’; committed beford’; started and there is no other
transaction?}, that updatedX and committed afte’; committed and beford; started. The second
phase is the termination phase and very fast. Upon the coreauiiest or abort fof;, the necessary
logging is performed]; releases all locks, and wakes up all transactions waitingrie of these locks.

Note that the version check for write operations happensreafequesting the lock and will be
repeated if the lock can not be immediately granted. Theihgckrocedure serializes conflicting write
operations. When a transacti@h holding the lock commits and wakes up a waiting transaclipri/’;
performs again the version check which will fail siriEgis concurrent and committed. Tf; aborts,7);’s
second check will succeed, and it will again request the.lock

6.2.2 Replica Control for PostgreSQL

In a replicated environment, we have to distinguish betweeal and remote transactions. As in the
centralized concurrency protocol of PostgreSQL, locatdaztions perform conflict checks and read
and write operations step by step whenever a statement msiset). Remote transactions, however,
only have write operations that are all known at the time ateset delivery. Furthemore, we must
guarantee that conflicting operations of both local and tenransactions are executed in the order of
writeset delivery. In order to achieve this without addingntuch complexity, we decided to execute
all remote transactions serially. Or more precise, whenaweriteset is delivered for either local or
remote transaction, the transaction has to completelyinatebefore the next writeset is delivered. We
denote this as atomic in the outline of the algorithm givelowe The description below is not exactly
the algorithm implemented in PostgreSQL. In order to shotiie text we had to simplify some issues
changing the semantics slightly at some points. See [WKdahe exact algorithm.

Transaction identifiers In order to perform checks and retrieve tuple versions, d?eSQL labels
each version with the local transaction identifier (TID) loé ttransaction who created the version (and
other identifiers which we do not discuss for lack of spacdRsT however, are individual assigned by
different database instances. Hence, the TIDs for the saamsatction might differ at different replicas.
Many components of PostgreSQL uBéD s in different ways, and hence, we do not want to change their
generation. Therefore, each transaction keeps locallyiif3. At the same time, each update transaction
will receive a global identifietz1 D, which will be the same at all replicas. Tli& D of a transaction
will be used to match the different loc&ll Ds created on different replicas. We genei@#Ds without
extra coordination overhead by using the total order in tivititesets are delivered. We keeg=d D
counter at each replica. Whenever a writeset is deliveredcounter is increased and its current value
assigned a&'1 D to the corresponding transaction. Furthermore, eachcaekéeps an internal table that
allows for a fast matching betwe&# D and correspondingI D. Note that for a local transactiof,/ D
andGID are generated at different timepoints (start and lateleaeit delivery), for a remote transaction
both are generated at the same time (writeset delivery).

Replication Tools Final 25

ADAPT: Middleware Technologies for Adaptive and Composablerbisted Components 1ST-2001-37126

Execution of local transactions For local transactions, the execution phase is the samefasebe
Additionally, the updated tuples are collected in a writes®henT; submits the commit request, and
T; is read-only, it commits immediately. Otherwise the wiéeld’S; is multicast to all replicas using
total order multicast. The writeset also contains the&sethich lists theG I Ds of those transactions that
are not concurrent t@;, i.e., that terminated befofgE started. The atomic commit phase fBr starts
upon delivery of the writeset. [f; has not been aborted so far, 3¢ D; is generated, and recorded.
The rest is the same as the commit in the centralized cagg.idfaborted sometime during execution
and before receiving its own writeset, it releases all lodkghe first waiting transaction for a lock is
a remote transaction, only the remote transaction is wokenQtherwise, all waiting transactions are
woken up. (Explanation see below).

Execution of remote transactions For remote transactions the entire execution is atomic. nljs
livery of a remote writesetV' S; with all updated tuples and sét, a transactior?; is started, itS51D;
generated, and recorded together vilithD;. For each tupleX in the writesetI; checks whether there
exists a committed version labeled with a transaction wiitsP is not inG. If this is the casé; aborts.

If no such version exists and there is currently no lock¥drthenT; gets the lock and performs the up-
date. If there are locks, execution éhis delayed until all tuples in the writeset have been checked
all checks have been successful, and there is a delayedeupiattupleX, T; sends an abort request to
the transaction holding the lock. This transaction musbloall(no concurrent remote transactions), and
its writeset is not yet delivered (because this would hagd te immediate commit). The local transac-
tion, upon completion of the abort, will grant the lockTa Once all updates have been performéd,
commits, and releases all locks. The next writeset can beepsed.

Discussion Note that we only delay the execution for tuples for whichaldransaction holds the lock.
All other updates are performed at the same time as the wechieck, avoiding to access a tuple twice
whenever possible. Note also that there is no version cheok writeset delivery of a local transaction.
If there is any conflict between a local transactibnand a remote transactidfi; whose writeset is
delivered beforel;’s writeset and which committed,; would have been aborted k.. Hence, upon
delivering the writeset fofl;, if it is still alive, it has already passed the version chiauglicitly. Note
also that a local transaction can commit when its writesébgally delivered. It does not wait until
the corresponding remote transactions have executed. T dbiarantees that the writeset will be
delivered, and hence, executed at all replicas.

Although a local transaction on replidd does not need to wait until the corresponding remote
transactions on the other replicas have executed, it mighidirectly delayed by the serial execution of
remote transactions executing locally fn We suggest to perform what we calpge-lock phasehat
does not need to access tuple versions but which needs atejoak tablel. 7' completely independent
from the locking mechanism in PostreSQL. For space reasangpo not discuss this approach here but
refer the interested reader to [WKO04].

6.3 Implementation

Writeset The writeset contains for each SQL data manipulation staterti.e., update, delete, insert)
for each changed tuple all modified attribute values and tieesponding attribute identifiers, and the
primary key values of the tuple. For SQL data definition stegets (e.g., create table, create function,

Replication Tools Final 26

ADAPT: Middleware Technologies for Adaptive and Composablerbisted Components 1ST-2001-37126

-]
2
®
2
|73
=]
[l

o T) . -)) “
e 77 0 Y

Local
Backend /* h

/
Hi
'
|
i\

'
'
! Replication
i Manager
] ' 1
Remote ! H Remote™ !
Backend / H Backend / !
' '
' Manager I Manager
' Postgres-R server | ! Postgres-R server |

O e D e

Network t

Figure 5: Architecture of Postgres-R

etc.) the writeset simply contains the query téxRemote replicas process the statements in the order
they appear in the writeset. For DDL statements, the exatyiath is the same as it is for a local
transaction (parser, planner, etc.). For DML statemeatsdch tuple to be changed, the remote backend
retrieves directly the valid version of the tuple using thddx on the primary key skipping most of the
normal planning and execution steps.

Architecture Figure 5 depicts the architecture of Postgres-R(SI). IndgPeSQL, the postmaster pro-
cess listens for a connection request from a client, and ¢hemtes a dedicated backend process which
will connect to the client and execute its transactionsidtes-R(SI) extends PostgreSQL with three new
processesremote backendeplication managemand communication managefThe original backends
are now calledocal backendsand execute local transactions. A remote backend prac#ssevritesets

of remote transactions. The communication manager’s ontpgse is to hide the details of the GCS
(currently Spread). We will not mention it any further. Tieplication manager (RM) is the coordinator
of the replica control algorithm. The local backends creatiéesets which are forwarded through the
replication manager and the GCS to the other replicas. Wieneplication manager receives a write-
set of a local transaction it forwards a confirmation mesdaghe corresponding backend. A remote
writeset is forwarded to the remote backend. Since only orieset may be processed at a time, the
replication manager does not accept any writeset from th& G@il the local or remote backend have
confirmed that they have processed the writeset. Addititaskis are necessary at the backends and the
replication manager to handle aborts correctly.

Implementation Details Weaddeda system table at each replica matching local transactemtifcers
with GIDs in order to perform the version checks appropriately afidieftly. Furthermore, we had
to enhanceahe abort mechansim in order to allow a remote transacti@béot a local transaction. This
required a quite deep understanding of the signaling mésmmawhithin PostgreSQL. The only place
where we really had tchangethe code was in the lock module. When a transaction joins tugng
gueue to acquire a lock, it is normally appended to the entdefjieue. We could simply adjust this
procedure and put the lock request of the remote transaatitre head of the waiting queue. However,

2Not all DDL statements will be replicated. [Cho03] discussenich statements to replicate, which to only executedeat th
replica they are submitted to, or which to disallow in a regied system.

Replication Tools Final 27

ADAPT: Middleware Technologies for Adaptive and Composablerbisted Components 1ST-2001-37126

70 110 -
o o non-replicated 100 a O non-replicated
g 60 5 replicas g 90 *5 repliclaS .
=D v 10 replicas £ 8 v 10 replicas I
o v 7 pe
£ 40 - g o>
£ — = 60 = —
@ 3 e a _ v e 50 > —r
2 t—— S 40 —
S - 5] —
% 20 % 30 ——%—"—
) < 20
o

e 10 10

O+——T—7—7 T T T T T T T 0 T T T T T T T T T T T T 1

20 40 60 80 100 120 140 160 20 40 60 80 100 120 140 160
Throughput in tps Throughput in tps
(@) (b)

Figure 6: TPC-W: (a) Browsing (read-only) and (b) Orderinogdate)

in PostgreSQL, upon releasing a lock, all waiting processesvoken up. Although they are woken up
in the order in which they are waiting, this does not guamrkat the lock is actually granted to the
first one in the queue due to possible race conditions of UNDB¢t@ss scheduling. Hence, we had to
change the lock release procedure slightly. If a local &etien7; holds a lock and a remote transaction
T; requests the lock, we put the lock request/pfat the head of the waiting queue, and send an abort
signal to7;. WhenT; aborts and releases the lock, and it sees that the first gadramsaction[; is

a remote transaction (by checking whether it has alreadyly,&lonly wakes upl;. The rest of the
waiting queue is passed 1. When the remote transaction receives the lock, it wakebeipest of the
processes in the waiting queue (in order to continue witlsthedard PostgreSQL procedure). Note also
that remote transactions can only abort when failing a warsheck. Hence, remote transactions should
never invoke the deadlock detection routine. We achiewgelinot setting the timer for the deadlock
detection.

6.4 Evaluation and Discussion

We evaluated the performance using two different appbicati The first test suite uses a TPC-W bench-
mark variant to simulate a real-world application. The sectest suite uses a 100% update workload.
All experiments are performed on a cluster of PCs (2.66 GHzigd® 4 with 512 M RAM) running
RedHat Linux. For each experiment, we run at least 2000@actions to achieve stable results. In here,
we only present results on the TPC-W benchmark. Furtheitsesan be found in [WKO04].

We performed our tests using the OSDL-DBT-1 benchmark [@pel is a simplified version of
the TPC-W benchmark [Tra00] simulating an online bookstdteere are three different workload types
by varying the ratio of browsing to buying transactions:nmrily shopping, browsing and ordering. In
our experiment, we choose the browsing workload, whichaioat80% browsing transactions and 20%
ordering transactions. We have set up a two-tier testbedente OSDL-DBT-1 driver is the front-
tier which directly connects to the database. There are I@8dah the schema. The database size is
determined by the items and clients in the system. We useyaswaall configuration with only 1000
items and 40 clients. Larger sizes will only decrease cdnflies and increase disk I/O which will favor
the replicated approach. We performed the experiment wftked number of 40 client connections.
The number of clients on each server and the load on each diemenly distributed. The throughput
in transactions per second (tps) is controlled by the thimle parameter, i.e., the time a client waits
between two consecutive requests.

We run the experiment with a centralized, non-replicatestese and then with 5 and 10 replicas.
Figure 6 shows the client response time for browsing andrimgléransactions when we increase the

Replication Tools Final 28

ADAPT: Middleware Technologies for Adaptive and Composablerbisted Components 1ST-2001-37126

overall load to the system. For all graphs, the responseitiosreases with increasing load since more
transactions concurrently compete for resources. Thenssptime of the centralized system is much
worse than our replicated configuration, and can achieveahdouwer maximum throughput. The rea-
son is that the server is overloaded very fast while in théaajed systems read-only transactions are
distributed among the replicas. Additionally, the cerited server has problems handling many clients.
The 10-replica system has smaller response times than tdygliba system for a given throughput be-
cause read-only transactions are distributed over evem mamiicas. The only exception are update
transactions at 20 tps where the 5-replica system is batartO replicas. The reason might be that with
10 replicas, more update transactions are remote, and heigenore likely that a local update trans-
action has to wait for a remote transaction whose writesetdsived earlier. At higher throughputs this
disadvantage does not show because the 10-replica systancisless loaded. In these experiments,
abort rates were always well below 1%, which shows that ostiesy can handle real world conflict rates
even for very small database sizes.

However, scalability is not unlimited. Updates have to bdgsened at all replicas. If the update load
increases, each replica has less resources to executegyudence, the performance gain from 5 to 10
replicas is not as big as from the non-replicated system épkcas. More about this phenomena can be
found in [JPPMAKO3].

6.5 Conclusion and Future Work

In summary, this experiment proves that the performanceuofsgstem is excellent for a real world
situation where most of the transactions are read-only. r€ulication solution performs better than a
centralized approach by distributing the load and cliehteughout the replicas in the system. Hence,
our approach implementing eager update everywhere réphcaithin the database system is feasible
and performs well for read-world applications.

Our current efforts lie in the integration of an online reegvmechanism into Postgres-R(SI). Our
approach will be based on approaches in [KBB01] and use thiementation provided in [Cho03] as a
basis.

7 Middle-R: Database Replication at the Middleware Level

Our middleware based replication tool Middle-R also use$S@€ underlying communication mechan-
sims. Before the start of BAPT, a prototype version of Middle-R existed to enable its ex@dun
[JPPMKAO2]. It provided access to a single evaluation dagaband did not provide access to arbi-
trary databases nor had any recovery facility implemerauce the project start, Middle-R has evolved
to a product in which arbitrary databases can be used. Ité&as ddditionally extended with dynamic
adaptability features — the goal of Adapt — such as onlinevery, dynamic load balancing and adaptive
load control. It has also been enhanced with replicatioarawDBC connectivity. We will outline these
advanced features in the following sections. For more detanformation, we will refer to the according
publications.

7.1 Overview

We first want to give an overview of the general architectur&imldle-R. [JPPMKAOQ2] describes the
system in more detail. Middle-R is a cluster based databg@eation tool. The system consists of
N nodes (machines), each node hosts a database system andle-Rliserver. Each database system

Replication Tools Final 29

ADAPT: Middleware Technologies for Adaptive and Composablerbisted Components 1ST-2001-37126

stores a full copy of the database (replica). The databgsécaion programs are written in the usual
way, using one of the standard database interfaces to echteith the database. Given a transaction
in form of an application program, the application prograenrhas to identify which data objects are
going to be accessed by the transaction. Object granuleaitybe a table, or any application specific
granularity level. The application programs are then dggdowithin Middle-R, and can be called via
the Middle-R client interface (the newly developed JDB@ifdce is discussed in Section 7.4).

Middle-R is responsible for the execution of the applicatimograms on the database replicas, and
performs concurrency and replica control. It uses the gmupmunication system (GCS) Ensemble
[Hay98] to disseminate information among the replicas. \&& tine total order multicast to determine
the execution order for conflicting transactions that warddcess the same objects. In order to achieve
this, Middle-R performs its own lock-based concurrencytauin

The system applies asymmetric transaction processingh adate transaction is only executed at
one replica. The other replicas do not re-execute the tctinsa(neither read nor write operations) but
simply change the affected records which is usually fast@n teexecuting the statement. This spare ca-
pacity can be used to process additional transactions. A&tnt processing can outperform symmetric
processing [JPPMAKO3], and might be the only feasible apginofor database systems with triggers
or non-deterministic behavior. Hence, most commerciaiesgs use asymmetric replication approaches
[Gol94]. In order to use asymmetric processing at the migdie layer, the underlying database system
has to provide a function to get the changes performed byrsdcdion (thewrite se), and a second
that takes the write set as input and applies it without exeing the entire SQL statements. We
implemented this functionality for PostgreSQL and it isreutly being implemented for MySQL and
Microsoft SQL Server. Oracle uses such mechanism for itsreplication protocol [Ora01].

In order to share the load among all the replicas, we followimary copy approach. Each set of
data objects that can be accessed within a single transastassigned a primary replica that will be in
charge of executing programs that access this specific setingtance, replicadvl might be primary
of object set{O1} and replicaN2 of object sets{O2},{01,02}. We allow transactions to access
arbitrary object sets, and overlapping sets might be asdigmdifferent replicas. This requires a global
concurrency control. In contrast, disallowing overlagpobject sets to be assigned to different replicas
would mean that we partition the data among the replica$) eguica being responsible for transactions
accessing object sets within its partition. In this caseheaplica could use its own local concurrency
control strategy. However, we would disallow transactitmaccess arbitrary object sets (spanning two
or more partitions) limiting transaction types.

The conflict-aware scheduling algorithm and its correc@nesn be found at [PJKAO0O]. We will
only outline it here. Let us first have a look apdate transactionshat perform at least one update
operation. The client can submit apdate request.e., a request to execute an update transaction, to
any Middle-R server. This server multicasts it to all middee servers using uniform reliable, total
order multicast. Upon receiving a request to execute trdinse!” delivered in total order, all servers
append the lock requests for objects accessed o the corresponding queues of the lock table (a
form of conservative 2PL locking). The primary execuiésvhenT’s locks are the first in all queues.

It starts a database transaction, exec(tsscode, and retrieves the write set from the database. Then
it commitsT locally and reliably multicasts (without uniformity or adng requirement) the write set

to the other Middle-R servers which apply it at their dataisasThe Middle-R server which originally
received the client request returns the commit confirmatioce it receives the write set (or after local
commit if it was the primary of the transaction). Since detiming the total order can take a long time,
the system uses optimistic execution to increase perfarea detailed description of this feature can
be found at [PJKAOO].

Replication Tools Final 30

ADAPT: Middleware Technologies for Adaptive and Composablerbisted Components 1ST-2001-37126

For queries (read-only transactions), there exist sewat@inatives. Firstly, they could always be
executed locally at the server they are submitted avoidamgnounication. However, this disallows any
form of load balancing, and if all requests are submittednt® server, this server will quickly become a
bottleneck. Since communication in a local area networlsigally not the bottleneck, an alternative is
to also execute queries at the primary. Apart of load batanisisues this might lead to a better use of the
main memory of the database system since each replica iagriomly of a subset of the data. Hence,
we can expect higher cache hit ratios at each replica [CAR@4] if each replica executes any type of
query. In the primary approach, a query request is forwatdedl replicas, the primary then executes
the query, returns the result to the submitting Middle-R/seand notifies the end of the query to all
replicas. Independently of whether a local or primary apphois used, the executing Middle-R server
might not need to acquire locks for queries but immediatalynsit them for execution if the database
uses snapshots for queries (as is done by PostgreSQL oepracl

The approach provides 1-copy-serializability becauseeglica decide on the same execution order
of conflicting transactions due to the total order multicastven if the primary fails after committing
but before sending the changes, a new primary will take ovdra-execute the transaction in the same
order due to the total order multicast.

7.2 Online Recovery

Replication aims to attain high availability by toleratifajlures of some replicas. In order to maintain
certain level of availability new replicas (crashed or nehipuld join the system. But what happens
during recovery? When a new replica joins the system ite staist be updated according from the state
of running replicas. This state transfer or recovery is Ugyerformed offline. However, if transaction
processing is stopped availability is lost. On the otherdh#rtransaction processing is not stopped (i.e.
online recovery), the recovery takes place whilst trangastare being processed in the system. In this
case, data consistency becomes an issue.

Middle-R has been enriched with online recovery ([KBBOb]guarantee a high level of availability
[JPPMAOQ2]. In this approach, replicas can play four rolesistar of an object sets (the one that fully
executes update transactions modifying this object setyvering replica (the replica that has joined the
system and needs to recover an up-to-date state of the dajalbecoverer replica of an object set (a
working replica that will transfer an up-to-date snapsHdhe objects), and replicas not participating in
the recovery.

In Middle-R, objects have been assimilated to tables ane:fibe, recovery is based on the notion
of tables. One of the features of the online recovery of Mieldlis thateach table can be recovered
independently

The online recovery works as follows. When a new replicagdhre system, a short state transfer
takes place. In this state transfer the recovering reptidecates the last transaction it processed on each
table. Then, a set of replicas is selected as recoverers. daloese replicas will recover a set of tables.
For the sake of simplicity, assume there is a single recoeaerthat tables are recovered one by one. The
recoverer will send the relevant log records (those coamding to the table being recovered that were
missed by the new replica) to the recovering replica. Theweng replica applies the corresponding
updates (the received log records).

Since the recovery is performed online, transactions caatepa table whilst it is being recovered.
The recoverer will be able to process the updates of thossadcions and send the corresponding log
entries to the recovering replica later. The recoveringjigapvill discard the updates from those transac-
tions, since queueing them might result in running out of meNduring long recoveries. The recovering

Replication Tools Final 31

ADAPT: Middleware Technologies for Adaptive and Composablerbisted Components 1ST-2001-37126

replica will instead receive these updates from the re@vver

When the recoverer reaches the end of its log for the tablegbeicovered, it will send an end
recovery message to complete the recovery of the table. thmaiving this message, the master of that
table will send a message indicating the last transactiatwtiil be considered part of the recovery. This
message will be used by the recoverer to determine whichtliteidast log entry (updates) that it will
forward to the recovering replica. The recovering replidh uge this message to discriminate when it
will stop discarding update messages on this table andtstgrteue them for their processing.

Once all tables have been recovered the recovering replichegome a regular working replica. It
has to be noted that a recovering replica can process ttéorsathat access tables already recovered.
So, it can help to process the current load as soon as onadablmvered.

Another feature of the online recovery is that it can deahwiimultaneous and cascading recoveries
in an efficient way. Multiple replicas starting recovery la¢ tsame time will be recovered at the same
time exploiting the underlying broadcast network therefoninimizing the consumed resources (CPU
and disk bandwidth from recoverers and network bandwid@gscading recoveries are also managed
efficiently. If a new replica joins the system when there iagoing recovery, the set of tables yet to
be recovered in the ongoing recovery will be recovered gamebusly by the new recovering replica
and the recovering replica that was already engaged in toweey process. This idea is extended to an
arbitrary number of cascading recoveries.

7.3 Load Balancing
7.3.1 Overview

A replicated database system can only then be used for ditglabthe load can be equally distributed
among all replicas, and none of the replicas becomes owdertbdn order to evaluate whether a database
system performs well, one of the target performance meisitise throughput (rate of executed trans-
actions per time unit). This metrics depends on the worklmaitk of transaction types), load (rate of
submitted transactions), cache hit ratio, load distrdoutamong replicas, etc. Another important aspect
of the database system to work well under a given workloadasnultiprogramming leve{MPL), i.e.,
the number of transactions that are allowed to run conctlyrevithin the database system. Initially,
when resources are freely available, then a high MPL bobstsighput. Also, if some transactions are
I/0 bound, concurrent transactions might keep the CPU buslewO takes place. However, when
resources are highly utilized, or a single resource becdheebottleneck (e.g., the log), increasing the
MPL will only increase context switches, and hence, put awene restraint on the resources. Perfor-
mance is then lower than in a system with less concurrensaidions. Also, if conflict rates are high,
additional transactions will only lead to higher abort sai@nd hence, wasted execution time.

In dynamic environments, workload and/or the load can changr time. As a result, the system
configuration has to be adapted dynamically, i.e., the MR the distribution of transactions across
replicas must be adjusted. An additional dynamic behagidné crash of individual components. If a
node fails, the other nodes must take over the load of thedfaibde.

The contribution of our work lies in providing a hierarcHiegproach with two levels of adaptation
for Middle-R. At the local level, the focus is on maximizinget performance of each individual replica
by adjusting the MPL to changes in the load and workload. MidRI maintains a pool of connections to
the database which is shared among transactions. The ghze pdol determines how many transactions
are concurrently submitted to the database, and hencerdetsr the MPL. At the global level, the
system tries to maximize the performance of the system asodevidy deciding how to share the load

Replication Tools Final 32

ADAPT: Middleware Technologies for Adaptive and Composablerbisted Components 1ST-2001-37126

among the different replicas. Assigning object sets to arimodes determines which transactions are
executed at which nodes. Given a static workload, an optdisatibution of object sets can easily be
found. However, when the workload characteristics chawgetime, and a node becomes overloaded, a
reassignment is necessary. The challenge of performirsg tinds of adaptation at the middleware level
is the reduced information that is available about the charig behavior and internals of the database
making it hard to detect bottlenecks. At the local level, vge a feedback driven approach that adjusts
the MPL according to the observed throughput in the recestt pd the global level, we take the number
of transactions waiting at each node for execution, to @talthe load in the system. In order to keep the
report reasonably short, we only present the general idel#iadh the algorithms, and their performance.
A detailed description of the algorithms can be found in [[AR04].

7.3.2 Local Level Adaptation

At the local level, each middleware server is configured tgimeze the performance of its local database
replica. Measurements have shown that Middle-R serverigaiteweight while the database servers are
the first to be the bottleneck [JPPMKAOQ2]. Hence, contrgllihe MPL is an important step in dynamic
performance optimization, and is done by limiting the cartiom pool to the database replica.

Our solution to control the MPL is based on the feedback obmtpproach proposed in [HW91].
Since it does not require database internal informatioa di&nflict rate, memory and other resource
consumption, etc., it is suitable for a middleware-basestiessy. In a feedback system, one uses the output
of the system as an indicator whether the input of the systeuld be changed. [HW91] proposes to
take the transaction throughput as output parameter. Irsi@raywithout control on the number of
concurrent transactions, the throughput of the databagerayusually rises with increasing the number
of transactions until the system saturates at a throughgak.df the number of concurrent transactions
increases further, the database enters the thrashinghrggishich the throughput falls very fast until
it stabilizes at some low residual value. Figure 7, adjufitech [HW91], illustrates this behavior. The
x-axis depicts the MPL, the y-axis depicts the throughphieved by the system with it, and the z-axis
shows how the curve changes over time assuming the workloaoges over time. Our measurements
on a real database have shown that if the workload contaimy e@nplex read operations, throughput
is generally low but many many transactions should run coeatly, if the workload contains many
simple write operations, a high throughput can be achiewedly at small MPLs (basically serializing
writes). When now the workload moves from a read intensivekiwad to a write intensive workload,
so does the dependency between MPL and throughput.

Hence, we have two goals. Firstly, at any given time with @giworkload, we have to determine
the optimal MPL, i.e., to deny newly submitted transactitmsexecute whenever this would lead to
a load that cannot be handled anymore by the database. Thet ishould set a MPL such that the
database system is never in the thrashing region.optimmal MPLis now defined as the MPL allowing
for the maximum achievable throughput. The second goal psdeide dynamic adaptability, that is, to
adjust the MPL when the workload changes such that it is rigigier than the optimal MPL. [HW91]
approximates the relationship between concurrent tréinsacand throughput at each time point with a
parabola. In order to estimate the coefficients, the systamgically measures the number of concurrent
transactions and the throughput. In order to capture the dependency of the parabola, more recent
measurements are given a higher weight than older measnitenfdter each measurement period, the
optimal MPL is set to the number of concurrent transactiottiexing the highest throughput. The
approach also addresses some stability problems. We hglenmanted this approach within Middle-R
using a incremental adjustment of the MPL. See [MFJPKO04{Heralgorithm and details.

Replication Tools Final 33

ADAPT: Middleware Technologies for Adaptive and Composablerbisted Components 1ST-2001-37126

throughput (tps)

50

ok

e}
open ~
connections

[te)
N

37

Figure 7: Throughput as a function of MPL over time

7.3.3 Global Level Adaptation

A replicated database might potentially improve its thigugt as more replicas are added to the system
[JPPMAKO3]. However, this potential throughput is onlyekad under an even load in which all replicas
receive the same amount of work (assuming a homogeneousgsethich in practice might never
happen. If the load is concentrated at one replica, the tjimowt will be the throughput of a single replica
or even worse due to the overhead of the replication protocahsure consistency among replicas. Load
balancing is aimed to correct situations in which some cegliare overloaded, while others have still
execution capacity. This is done by redistributing the laadevenly as possible among the replicas.
Therefore, any load balancing algorithm requires a meaasttmate the current load at each replica.

Each Middle-R server knows the total number of concurretivatransactions in the system, since
requests are sent to all servers. All servers acquire lamkghe objects accessed by transactions that
are kept until the transaction terminates locally. Henoeking at its lock table, each server has a good
estimate of the total number of active transactions. Foresohthem the server is the primary copy. We
call these the local transactions of the server. Local &retitns might either be executing or waiting for
locks or waiting for a free connection. For others, the seiveot the primary. We call them remote
transactions. If it is an update transaction the server iingafor the write set (it is still active at the
primary), or currently applying the write set or waiting #ofree connection (the transaction is committed
at the primary). Ifitis a query, the write set message is graptl used as an indication of the end of the
query. Looking at this lock table, each server can estinteetimber of local active transactions of any
other server S. This calculation can be done without anytiaddi communication overhead.

The number of local active transactions at a server is a gstimi@e of the load at this server. If it is
known that different transaction types have different ekiea times, then this load metrics can be made
more precise by weighting the number of local active tratisas with the observed average execution
time [ACZ03b]. The degree of balance is captured by the magaamong the number of local active
transactions at each node. A variance of zero represenendyalistributed load. On the other extreme,
the maximum variance is achieved when the entire load isasurated on a single replica.

The load balancing algorithm is in charge of finding a primasgignment of object sets to servers
that minimizes the variance. We have developed two algosthOur first algorithm uses a branch-and-
bound mechanism to assign object sets to primaries. At daghtlse algorithm selects an object set
that is accessed by many transactions and assigns it tcadirsegielding a set of partial solutions. The

Replication Tools Final 34

ADAPT: Middleware Technologies for Adaptive and Composablerbisted Components 1ST-2001-37126

90 250
10 MB Database - LQ1 # open

o — —— || connect tions
80
load (tps) 1
70 100 =2
=200 : Ada
60 -+ 300 4
g - 400 0l S 5 3 2
5

50 =500

N
3
3

@
8

throughput (tps)
8
throughput (tps)
g
a
a8
B

N
S
a
S

10 MB Database - UPD8

o

. ' " y ' " ' [} 100 200 300 400 500 600
0 5 10 15 20 25 30 35
open connections load (tps)

a b

Figure 8: Adaptation under constant load

algorithm then traverses all partial solutions and pruhesé that will not yield in a better solution than
the current one. The pruning is based on an estimation fumethich provides a lower bound of the
actual possible variance. Although the algorithm providesoptimal assignment, its use is limited to
small number of object sets and replicas since its computaitne grows exponentially. Our alternative
is an inexpensive greedy algorithm which assigns at eaphtlséeunassigned object set with the highest
load to the replica with the smallest current load. Our camspa experiments show that in 80% of the
runs the greedy allocation is optimal and in the remaininggsrit was very close to be optimal. The
execution time is highly reduced compared to the branchkanuohd algorithm.

A Middle-R serverS responsible for load balancing periodically calculatesltiad variance and runs
the greedy algorithm if it exceed a given threshold. The nesigament will only be applied if it leads
to a significant improvementS multicasts a load balancing messaggto all servers to inform about
the new assignment using the total order multicast. Trdiosecreceived beforey; are still executed at
the old primaries, transactions received aftgrat the new primary.

7.3.4 Experimental Results

A detailed performance analysis is presented in [MFIJPKO4]here, we only summarize the results.
Experiments have been performed on 10 machines, each vatprogessors AMD, 512 MB, and 60 GB
disk, interconnected with a 100-MBit switch.

Local Adapatability We first performed a series of preliminary results. In easch tien, we used a
different workload (update intensive vs. query intenssmall database vs. large database), and then
checked what it the maximum achievable throughput when we ML and the load submitted to the
system. We determined that depending on the workload, $iteaatabase, and the load submitted to
the system, a different MPL provides the maximum achievétirieughput. The goal of our local adap-
tation mechanism is that this optimal MPL is automaticalyested without an external administrator
indicating the type of workload, the size of the databaséeildad. As an example of its performance,
Fig. 8 presents for update intensive (a) and query inter(iiyevorkloads at a small database size of
10MB, what is the maximum achievable throughput, when MP4eisto fixed values, and we vary the
load submitted to the system. Additionally, the figures aon& curve of what is the throughput achieved
by our local adaptation algorithm. We can see, that for alfio(x-axis) and workload types ((a) and (b)),

Replication Tools Final 35

ADAPT: Middleware Technologies for Adaptive and Composablerbisted Components 1ST-2001-37126

it achieves a nearly optimal throughput by choosing thenagtiMPL automatically. In an experiment
where we chose an MPL far of being optimal at system startegewaluated the time the system needed
to calculate the optimal MPL. It took around 5 seconds to stdjlihis means that our algorithm works
well if workload changes occur at most in minute intervalsclilwe believe is quite realistic.

Global Adaptability To test global adaptability, we first tested the maximum exgle throughput
in a system where the load is evenly distributed among alica&s and the throughput achievable when
all load goes to one replica (uneven distributed) and themoiadaptation. Then we tested a system
where originally all load goes to one replica but the glolgdability algorithm is in place. The result
shows that after an initialization time, the system withbgllbadaptability moves from the low maximum
throughput of the unbalanced system to the high maximunugimput of a perfectly balanced system.
The transition needed around 4 seconds. We performed #ssddr various loads, workloads, database
sizes, and number of replicas, all with similar results.

Tests combining both local adaptation and global adaptatiwwed that both algorithms worked
smoothly with each other leading to an optimal MPL and loatriiution for various kinds of workloads,
and number of database replicas.

7.4 JDBC Connectivity

In order to provide connectivity with Java applicationsctsas the application server, a JDBC driver
has been developed for Middle-R. JDBC drivers were desigoaxbntact a single database and not a
replicated database. In order to support the access to 84lRda set of mechanisms have been built into
the Middle-R JDBC driver:

¢ A replica discovery mechanishas been incorporated into the JDBC driver. The databasd-IP a
dress is an IP multicast address that is used by the driveulttcast a discovery message. Replicas
(Middle-R instances) answer to this message with their lResbes. From the set of collected ad-
dresses the JDBC driver tries to establish a TPC connectitbnowe of them (traversing the set if
necessary). Once the connection is established, all thetckquests are submitted to this replica
through the TPC connection. The replica multicasts theesio all replicas.

¢ A fail-over mechanismin case the replica with which the driver is connected faitthe connec-
tion fails), the driver tries to connect with one of the otheplicas using the IP addresses collected
through the discovery process. If none of the addresses, Wosltries again the discovery process.
Since the last request made to the failed replica might beigintrmot be multicast to the rest of
the replicas, this last request is in doubt (i.e., it couldehlbeen submitted and the reply was not
received). For this reason, a duplicate removal mecharssnciuded as well. Connections are
uniquely identified as well as requests submitted througmthif a request is submitted twice or
more due to the fail-over, it is removed by Middle-R. This ¢tendone thanks to the unique iden-
tifiers of the connection and the requests. Replicas only teeecall the last request submitted
and its reply (if it was performed). Upon the reception of guest that was previously submitted,
there are two possibilities: 1) There is no reply recordedthit case the request is processed
(since it has not been processed by the working replicasihenckply returned; 2) There is a reply
recorded. Then, the request has already been processedefias returned and the request
discarded. Note that this mechanism is very similar to thehaeisms presented in Sections 3 and
4 for exactly-once execution.

Replication Tools Final 36

ADAPT: Middleware Technologies for Adaptive and Composablerbisted Components 1ST-2001-37126

e A object set discriminatorThis discriminator parses the SQL statement and deteamvhether it
is a query or an update transaction. Additionally, it deiegs which tables are being accessed and
in which mode. It also finds out whether the statement is amigpdf single tuples identified by
their primary key. All this information is packed with thegugest to help Middle-R to discriminate
the object set of the transaction.

The driver is currently being enriched with an additionalctmnism to enable its use by replicated
clients such as the replicated application server:

e A connection serialization interfaceThis interface enables to serialize the state of a cororecti
that includes the unique connection identifier and the iflenbf the last request submitted. That
way the connection can be checkpointed to another replidar@gume the connection. In case
of duplication of request, the duplication removal mechanguarantees exactly once semantics.
This mechanism will support as well active replication. T™omnection is established at one of
the active client replicas and then propagated to the redeaiclient replicas. From then on, the
duplicate removal enforces the exactly once semantics.

References

[ABKW98] T. Anderson, Y. Breitbart, H. F. Korth, and A. WooReplication, consistency, and prac-
ticality: Are these mutually exclusive? WCM SIGMOD Conf.1998.

[ACZ03a] C. Amza, A. L. Cox, and W. Zwaenepoel. Conflict-aevacheduling for dynamic content
applications. IHJSENIX Symp. on Internet Technologies and Syst26@s.

[ACZ03b] C. Amza, A. L. Cox, and W. Zwaenepoel. Distributegtsioning: Consistent replication
for scaling back-end databases of dynamic content web sitddiddleware 2003.

[Apa03] Apache Web Services Project. Axis SOAP library, si@m 1.1, June 2003.
http://ws.apache.org/axis.

[BBMT04] O.Babaoglu, A. Bartoli, V. Maverick, S. Patarin, and HuMWA Framework for Prototyp-
ing J2EE Replication Algorithms. IRroc. of the Int. Symposium on Distributed Objects
and Applications (DOA)2004. accepted.

[BEAO2] BEA Systems IncBEA WebLogic Server Programming WebLogic Enterprise JaaaB
release 7.0 edition, September 2002.

[BGRSO00] K. Bohm, T. Grabs, U. Rbhm, and H.-J. Schek. Eatihg the coordination overhead of
synchronous replica maintenance in a cluster of datab&s&siro-Par, 2000.

[BHG87] P. A. Bernstein, V. Hadzilacos, and N. Goodm&muncurrency Control and Recovery in
Database System#ddison Wesley, 1987.

[BKRT99] . Breitbart, R. Komondoor, R. Rastogi, S. Seshadri, An8ilberschatz. Update propa-
gation protocols for replicated databasesA®M SIGMOD Conf.1999.

[BLWO2] R. Barga, D. Lomet, and G. Weikum. Recovery guarast®r general multi-tier aplica-

tions. InProc. of the Int. Conf. on Data Engineerin§an Jose, California,USA, 2002.

Replication Tools Final 37

ADAPT: Middleware Technologies for Adaptive and Composablerbisted Components 1ST-2001-37126

[Bor04] Borland. Interbase Documentation, 2004.

[BPAO4] A. Bartoli, M. Prica, and E. Antoniutti. A replicath framework for program-to-program
interaction across unreliable networks and its implentartan a servlet container. Tech-
nical report, DEEI University of Trieste, 2004. Accepted pablication in Concurrency
and Computation: Practice and Experience (subject to mewisions).

[CAZO02] A. L. Cox C. Amza and W. Zwaenepoel. Scaling and Aghility for Dymaic Content
Web Sites. Technical Report TR-02-395, Rice UniversitY)20

[Chi03] R. Chinnici. JavdM APl for XML-based RPC: JAX-RPC 1.1 2003.
http://java.sun.com/xml/jaxrpc/index.jsp.

[Cho03] M. Chouk. Master—slave replication, failover aridtributed recovery in PostgreSQL
database. Master’s thesis, McGill University, June 2003.

[CMZ03] E. Cecchet, J. Marguerite, and W. Zwaenepoel. RAIRbdundant array of inexpensive
databases. Technical Report 4921, INRIA, 2003.

[DeMO03] L. G. DeMichiel. Enterprise JavaBean¥ Specification, Version 2, November 2003.
http://java.sun.com/products/ejb/docs.html.

[FGOO0a] S. Frglund and R. Guerraoui. A pragmatic implemteriaof e-transactions. IRroc. of
Symp. on Reliable Distributed Systems (SRR8jnberg, Germany, 2000.

[FGOOb] S. Frglund and R. Guerraoui. X-ability: a theory eplication. InProc. of Symp. on
Principles of Distributed Computing (PODortland, Oregon, USA, 2000.

[FGO1] S. Frglund and R. Guerraoui. Implementing e-trath@as with asynchronous replication.
IEEE Transactions on Parallel and Distributed Systef42):50-97, 2001.

[GBHCO0] S. Gribble, E. Brewer, J. Hellerstein, and D. Cull8calable, distributed data structures
for internet service construction. Proceedings of the Fourth Symposium on Operating
Systems Design and Implementatigaf00.

[GHOS96] J. Gray, P. Helland, P. O’'Neil, and D. Shasha. Thedes of replication and a solution.
In ACM SIGMOD Conf.1996.

[Gol94] R. Goldring. A discussion of relational databasplication technology.InfoDB, 8(1),
1994.

[HAA99] J. Holliday, D. Agrawal, and A. El Abbadi. The perfmance of database replication with
group communication. limt. Symp. on Fault-tolerant Computin§999.

[Hay98] M. Hayden. The Ensemble System. Technical Repor®8HR 662, Department of Com-
puter Science. Cornell University, January 1998.

[HW91] H. Heiss and R. Wagner. Adaptive Load Control in Tiestion Processing Systems. In
Proc. of 17th VLDB1991.

[JBO] JBoss Group. JBoss. http://www.jboss.org/.

Replication Tools Final 38

ADAPT: Middleware Technologies for Adaptive and Composablerbisted Components 1ST-2001-37126

[JB003] JBoss Group. JBoss 3.2.3, November 2003. httpwibess.org/.

[JPPMAO2] R. Jiménez-Peris, M. Patifio-Martinez, and\®Bnso. Non-Intrusive, Parallel Recovery
of Replicated Data. llEEE Symp. on Reliable Distributed Systems (SRRE&)2.

[JPPMAKO3] R. Jiménez-Peris, M. Patifio-Martinez, Gordo, and B. Kemme. Are quorums an alter-
native for data replicationACM Transactions on Database Syste@&(3), 2003.

[JPPMKAO2] R. Jiménez-Peris, M. Patifio-Martinez, Bntfae, and G. Alonso. Improving the scala-
bility of fault-tolerant database clusters. Pnoc. of Int. Conf. on Distributed Computing
Systems2002.

[KAOOa] B. Kemme and G. Alonso. Don't be lazy, be consistétastgres-R, a new way to imple-
ment database replication. limt. Conf. on Very Large Database2000.

[KAOODb] B. Kemme and G. Alonso. A new approach to developimgl amplementing eager
database replication protocol8CM Transactions on Database Syste@t3), 2000.

[KBBO1] B. Kemme, A. Bartoli, and O. Babaoglu. Online Recgnfiation in Replicated Databases
Based on Group Communication. Rroc. of the Int. Conf. on Dependable Systems and
Networks 2001.

[MFJPK04] J. M. Milan-Franco, R. Jiménez-Peris, M. Paifartinez, and B. Kemme. Adaptive
distributed middleware for data replication. Middleware 2004. accepted.

. E. Moser, P. M. Melliar-Smith, P. Narasimhan, L. Tewksy, and V. Kalogeraki. The

[MMSN*99] L.E.M P. M. Melliar-Smith, P. N imhan, L. Telk d V. Kal ki. Th
Eternal System: An Architecture for Enterprise Applicago InInt. Enterprise Dis-
tributed Object Computing Conferencgeptember 1999.

[NMMSO01] P. Narasimhan, L. E. Moser, and P. M. Melliar-SmiBtate Synchronization and Recov-
ery for Strongly Consistent Replicated CORBA ObjectsPmc. of the IEEE Int. Conf.
on Dependable Systems and Networks(DERJE Computer Society Press, 2001.

[OMGO00] OMG. Fault Tolerant CORBAObject Management Group, 2000.

[Ope02] Open Source Development Lab. Descriptions and Deatation of OSDL-DBT-1,
2002.
[Ora01] Oracle. Oracle 9i Replication, June 2001.

[PBBT02] D. Patterson, A. Brown, P. Broadwell, G. Candea, M. Clie@Gutler, P. Enriquez, A. Fox,
E. Kiciman, M. Merzbacher, D. Oppenheimer, N. Sastry, Wzl&ét, J. Traupman, and
N. Treuhaft. Recovery-oriented computing (roc): Motigati definition, techniques, and
case studies. Technical Report UCB CSD-02-1175, UC Berk€&lemputer Science,
2002.

[PGS98] F. Pedone, R. Guerraoui, and A. Schiper. Exploiitgmic broadcast in replicated
databases. In D. J. Pritchard and J. Reeve, edifang-Par, 1998.

[PIKAOQ] M. Patifio-Martinez, R. Jiménez-Peris, B. Keayrand G. Alonso. Scalable Replication
in Database Clusters. Proc. of Distributed Computing Conf., DISC’00. Toledo, f@pa
October 2000.

Replication Tools Final 39

ADAPT: Middleware Technologies for Adaptive and Composablerbisted Components 1ST-2001-37126

[PMS99]

[Pra02]

[Sha03]

[Sun03]

[Tra00]
[UAB T00]

[VVRBOS]

[WKO04]

[WKMO04]

[ZMMS02]

[ZMMS03]

E. Pacitti, P. Mine, and E. Simon. Fast algorithnrsnh@intaining replica consistency in
lazy master replicated databasesinn Conf. on Very Large Data Bases999.

Pramati Technologies Private Limitedramati Server 3.0 Administration Guid2002.
http://www.pramati.com.

Bill ShannonJava™ 2 Platform Enterprise Edition Specification, v1.8un Microsys-
tems, Inc., November 2003. http://java.sun.com/j2eédbas/.

Sun Microsystems, Inc. ECpEYf specification: 1.1 final release, November 2003.
http://java.sun.com/j2ee/ecperf].

Transaction Processing Performance Council. TeacBmark W, 2000.

K. Ueno, T. Alcott, J. Blight, J. Dekelver, D. Julin, C@ihkuch, and T. ShieNVebSphere
Scalability: WLM and ClusteringlBM RedBooks SG246153, 2000.

W. Vogels, R. van Renesse, and K. Birman. Six misemtions about reliable distributed
computing. InProceedings of the 8th ACM SIGOPS European Worksh®®8.

S. Wu and B. Kemme. Postgres-R(Sl): Combining repptontrol with concurrency con-
trol based on snapshot isolation. Technical report, ScbbGlomputer Science, McGill
University, 2004. submitted for publication.

H. Wu, B. Kemme, and V. Maverick. Eager Replicatiar Stateful J2EE Servers. Rroc.
of the Int. Symposium on Distributed Objects and Appliceti(DOA) 2004. accepted.

W. Zhao, L. E. Moser, and P. M. Melliar-Smith. Uniéitton of replication and transaction
processing in three-tier architectures.Aroc. of the Int. Conf. on Distributed Computing
Systems (ICDCSVYienna, Austria, July 2002.

W. Zhao, L. E. Moser, and P. M. Melliar-Smith. Designd implementation of a plug-
gable fault tolerant CORBA infrastructure. Rroc. of the Int. Parallel and Distributed
Processing Sympk-ort Lauderdale, California, 2003.

Replication Tools Final 40

