
ADAPT
IST-2001-37126

Middleware Technologies for Adaptive and
Composable Distributed Components

Replication Tools

Deliverable Identifier: D3
Delivery Date: 8/19/2004
Classification: Public Circulation
Authors: B. Kemme, V. Maverick, A. Bartoli, R. Jiménez-Peris, M. Patiño-

Martı́nez, S. Patarin, H. Wu, J. Vuckovic, M. Prica, E. Antoniutti
di Muro, S. Wu, J. Milan-Franco

Document version: Final, 08/16/2004

Contract Start Date: 1 September 2002
Duration: 36 months
Project Coordinator: Universidad Politécnica de Madrid (Spain)
Partners: Università di Bologna (Italy), ETH Zürich (Switzerland),

McGill University (Canada), Università di Trieste (Italy),
University of Newcastle (UK), Arjuna Technologies Ltd.(UK)

Project funded by the
European Commission under the
Information Society Technologies
Programme of the 5th Framework

(1998-2002)

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

Contents

1 Dependencies with other Deliverables 4

2 The ADAPT Framework for Application Server Replication 4
2.1 Introduction 4
2.2 Design .. . 6

2.2.1 Uniform model of components 6
2.2.2 Interception of invocations 7
2.2.3 Requests and responses 8
2.2.4 Transactions .. . 9
2.2.5 EJB lookup mechanisms 9
2.2.6 Deployment .. 9
2.2.7 Further issues 10

2.3 Implementation 10

3 EJB Replication 10
3.1 Model and Assumptions 10
3.2 Replication Algorithm 12

3.2.1 Client protocol 12
3.2.2 Primary Protocol 12
3.2.3 Backup protocol .. . 13
3.2.4 Failover protocol 13
3.2.5 Recovery protocol 14

3.3 Performance Evaluation 14
3.3.1 Evaluation based on ECperf benchmark 15
3.3.2 Component Analysis 16
3.3.3 Failover .. 16

3.4 Related Work 17
3.5 Current Work 17

4 Web-service Object replication 18
4.1 Model and Assumptions 18
4.2 Replication Algorithm 19

4.2.1 Client Protocol 19
4.2.2 Server Protocol 19

4.3 Implementation 20
4.4 Performance Evaluation 20
4.5 Related Work 21

5 Database Replication: An overview 22

6 Postgres-R(SI): An integrated database replication solution 23
6.1 Introduction and Overview 23

6.1.1 Postgres-R: the predecessor 23
6.1.2 Snapshot Isolation 24
6.1.3 Postgres-R(SI) 24

Replication Tools Final 2

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

6.2 Replica and Concurrency Control 24
6.2.1 Concurrency control in PostgreSQL 24
6.2.2 Replica Control for PostgreSQL 25

6.3 Implementation 26
6.4 Evaluation and Discussion 28
6.5 Conclusion and Future Work 29

7 Middle-R: Database Replication at the Middleware Level 29
7.1 Overview .. . 29
7.2 Online Recovery 31
7.3 Load Balancing 32

7.3.1 Overview .32
7.3.2 Local Level Adaptation 33
7.3.3 Global Level Adaptation 34
7.3.4 Experimental Results 35

7.4 JDBC Connectivity 36

Replication Tools Final 3

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

1 Dependencies with other Deliverables

This deliverable is a description of several replication tools that have been developed. Some of them will
build the building blocks for the integrated BS Middleware (D13 due on month 29). The aspects of the
evaluation plan that pertain to replication tools are covered by this deliverable in form of performance
measurements. Additional performance measurements can befound in the cited technical reports. The
deliverable builds upon deliverable D1 (due on month 6) which outlines the tasks that have to be per-
formed and the challenges associated to it. These tasks can be provided by quite independent modules
for the different tiers of a basic service architecture. Thetasks are as follows:

• Replication at the application server. Sections 2 to 4 discuss our contributions in this context.

• Replication at the database server. Sections 5 to 7 discuss replication tools on the database level.

Clearly, if both application server and database server arereplicated, integration tasks might be neces-
sary to provide correct interaction. Deliverable D13 will focus on this aspect. We will discuss throughout
this deliverable, where such integration tasks will take place. Several papers (accepted for publication)
and technical reports have been written summarizing parts of developments that have been made within
the ADAPT project and which fall under deliverable D13. As such, this deliverable, will only provide
a short overview of each of the contributions and refer the interested reader to the detailed papers and
technical reports.

Basically all developed replication solutions both at the level of application servers as for database
replication, use group communication systems (GCS) for communication among replicas. The group
communication system is used for group maintenance and for multicast. In most cases, uniform reliable
total order multicast is used. For more information about GCS, see deliverable D2.

2 The ADAPT Framework for Application Server Replication

2.1 Introduction

In recent years, the J2EE architecture has become popular for web-based applications and web services,
providing services to manage transactions, persistence, security, and object life-cycles. In J2EE based
application server systems, replication is an essential strategy for reliability and efficiency. Typically,
replication means that several instances of a server are started. If one instance crashes, the others can
continue to work. Furthermore, depending on the replication configuration, the load can be distributed
across the different replica, and new replicas can be added in order to serve more client requests.

There exist many different replication strategies that aredetermined by various parameters. (i) Differ-
ent types of componentsmight have to be replicated. In J2EE, the main components containing business
logic and state are servlets and EJBs. (ii) Replication can be active, i.e., each request is executed at all
replicas. The system is responsive as long as one replica is running and returns a result. Active schemes
require deterministic execution, and can only be used for fault-tolerance but not for scalability. In a pas-
sive scheme, for a given client session, one server replica is the primary for this client while the others are
backups. Only the primary executes the requests and multicasts any state changes to the backups. If the
primary fails, failover takes place, and one of the backups becomes the new primary, and continues the
execution. Maintaining and applying state changes at the backup is usually much faster than executing
the request itself and requires less resources. Hence, the backups can use the unused resources to be
primaries for other clients. The disadvantage of the passive scheme is the complex state transfer from the

Replication Tools Final 4

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

� � � � � � � � � � 	
 � � � � � �
 �

 �
 � � � � � � � � � � �

� � � � � � � � � �

� � � 	

Figure 1: A replication algorithm is layered on top of the ADAPT framework

primary to the backups. (iii)State propagationdefines how the state is propagated to backups in passive
schemes. Usingcold propagation, the primary stores the state information on an error-free persistent
storage which can be accessed at failover by the new primary.In this case, the new primary can actually
be initiated only when needed after a crash. Usingwarm propagation, the primary sends the state to
the backups directly via messages or distributed shared memory. Backup instances must exist but we
can assume that in-memory propagation is faster than writing to disk. (iv) Thepropagation timedefines
when state propagation takes place. Usingeagerpropagation the state is propagated some time before
the response is returned to the user, inlazypropagation, only some time after. Eager replication leadsto
slower responses but can guarantee consistency. Lazy replication provides fast response but consistency
might be lost if the primary crashes after a response is returned but before state propagation.

Many commercial J2EE application servers provide some formof replication for J2EE. We will
discuss them more closely in Section 3.4. Understanding theimplications of the different alternatives is
difficult, and the choice of the best one, depending on the expected application profile, remains an open
research question. Our work attempts to be a further step in this direction.

The component model of J2EE (providing components like servlets, session and entity beans, etc.)
has benefits for the development of replication support. It requires the developer to keep application
state within clearly-declared objects; the invocations ofthese objects are intercepted by the server; and
transactions are handled by a central transaction manager with a well-known API. Together, these con-
straints mean that in a J2EE system, all the application events of particular interest for replication are
already “exposed” to the application server so that, in principle, a replication algorithm can observe and
intervene in them.

Still, the design and evaluation of a replication algorithmfor J2EE (or any practical component
architecture) requires a substantial investment in development. An application server is a complex piece
of code, and modifying it is not easy. Further, much of the work of modifying the server is common
between different replication algorithms: most algorithms, for example, will need to intercept component
invocations from outside the server. Finally, the modifications will need to be redone or re-examined for
every new version of the underlying application server.

For all these reasons, we have chosen to develop J2EE replication strategies in two layers (Figure 1).
The lower layer is our ADAPT framework, which handles all the detailed interactions with the underlying
server code. The specific replication algorithm is plugged into the framework and runs on top of it. The
framework is implemented once and for all for a given application servers, and can be used by different
replication algorithms. The interaction between the layers is defined by an API. Through the API, the
replication algorithm sees a simplified view of the components in the system and the invocations between
them. It does not see the underlying J2EE implementation. When a component is invoked, control passes
to the replication algorithm before reaching the component. The algorithm may perform other actions,

Replication Tools Final 5

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

such as communicating with other replicas, before or after the invocation. Building replication algorithms
on top of a framework has several advantages:

• The framework provides important building blocks that are necessary for many replication algo-
rithms, e.g. to get and set the state of components, and to intercept calls to components, the trans-
action manager, or other services. Implementing such general functionality once for all replication
algorithms, easens development and allows for reusability.

• The framework hides the specifics of the given application server. Only the framework devel-
oper must be very familiar with the underlying application server to be wrapped. The developer
of the replication algorithm, in contrast, is provided witha high-level interface that is designed
specifically with replication in mind.

• In the context of our ADAPT project, the chosen approach allowed us to split development and
expertise needed for D3 among the different research partners in a modular way. Bologna was the
main developer of the framework, with extensive knowledge of JBoss. Trieste and McGill devel-
oped replication algorithms focusing on their correctnessand efficiency. Of course, throughout the
development, extensive communication among the research partners took place. This was in par-
ticular needed, since the development of the replication algorithms started before the final version
of the framework was in place. Hence, useful feedback could be given at all times.

2.2 Design

In this section, we only present the major features of the framework. For more details, we refer to
[BBM+04].

2.2.1 Uniform model of components

For a detailed description of J2EE components, we refer to D1. Here, we only want to recall the following
abbreviations. In regard toEnterprise JavaBeans (EJB), session beans(SB) can bestateless session
beans(SLSB) and do not contain internal state across client calls, or stateful session beans(SFSB) and
maintain internal state for the lifetime of a caller session. Entity beans(EB) are objects that represent
data in persistent storage (mostly database system).Message beansare another kind of EJBs. They
are currently outside the scope of our research. Servlets are components of the web-container. We
are interested in both supporting client-server applications as well as web services. Client applications
invoke beans through the RMI remote-procedure-call protocol. For web-services, stateless session beans
can be used as web-service endpoints (see the EJB specification [DeM03], section 5.5). An alternative
is to use the Axis SOAP engine [Apa03]. In Axis, a web-serviceendpoint is implemented by a special
type of component, somewhat simpler than an EJB, but likewise deployed with a declarative descriptor.
For our purposes, an Axis service implementation object is simply another variety of component. Web-
service clients invoke Axis service objects or stateless session beans through SOAP messages sent by
HTTP.

All kinds of components (currently stateful session beans,stateless session beans, entity beans, and
Axis web-service objects) are presented in the same way to the replication algorithms. Components are
created by application code, whether directly from the client or indirectly through other components.
The framework notifies the local replication interface after a component has been created, passing it a
component handlewhich refers to the specific component instance. The client may also look up persistent

Replication Tools Final 6

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

�� �

� � ! " # $! % & ! %

$! % & ! % % ! ' � () # * ") � + * % # , -

Figure 2: Interception points

components (entity beans) by their primary keys. When they are found, the server instantiates them, and
then the framework notifies the replication algorithm that they have been instantiated, again providing
a correspondingcomponent handle. The handle provides information about the kind of component, its
name (each deployed bean class has a name), and the instance identifier. It provide methods to create
the component (e.g., at another replica), or test whether two components are equal. The framework
provides methods to test whether a component has state, and to get and set the state. In the API, the state
of a component is an opaque serializable object, which can besent between replicas. The framework
uses EJB mechanims to access state (e.g., passivation for session beans, and reading/writing attributes
defined by container-managed persistence for entity beans). For Axis web-service objects, the class must
implement the JavaSerializable interface.

When the client deletes a component, the framework notifies the replication algorithm before the
deletion takes place. The algorithm may not prevent the deletion, but it can perform any related process-
ing before the component disappears.

While an entity bean is in memory, the J2EE server treats it asa cached copy of the corresponding
persistent data. If its state is consistent with the database, the server may choose to flush it from mem-
ory. The ADAPT framework allows the replication algorithm to block a component from being flushed,
forcing it to remain in local memory.

2.2.2 Interception of invocations

When one component makes a call to another component, the replication framework intercepts the call
at three key points (see Fig. 2). At each point, the replication algorithm may intervene, performing any
computation or communication before or after continuing. In fact, it does not have to continue execution
along this path; it may throw an exception, or return a response computed elsewhere. The interception
points are (1) Just before control leaves the caller. If the caller is replicated, the replication algorithm
may synchronize with other replicas before proceeding. (2)If the caller is an RMI client, we intercept
at the stub, i.e., client-side logic belonging to the serverreplication algorithm. It may resend requests,
fail over to another server host, etc. (3) Just before control is transferred to the target component. The
component is ready for the invocation, but also for other operations such as reading and writing state.

If the caller is replicated as well as the server, then there are two replication algorithms in this
scenario. At point 1, control is still in the domain of the caller’s replication algorithm. At point 2, even
though execution is still on the calling host, logical control belongs to the callee’s algorithm. In particular,
if the stub detects a server failure, it can fail over to another server host. The failover mechanism depends
entirely on the server’s replication algorithm, not the caller’s. (We indicate the domains of the two

Replication Tools Final 7

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

algorithms with shading.)
The replication algorithm expresses the logic at each of these points by implementing an interface.

The framework API defines a “local” interface, for logic in the local server, and a “stub” interface, for
logic referring to a remote server. When the framework intercepts execution at points 1 and 3, it passes
control to the local interface, implemented respectively by the replication algorithms of the client and the
server. At point 2, it passes control to the stub interface, which runs on the caller but provides invocation
logic for the server’s replication algorithm. For instance, at point 3, when a component is about to be
invoked, the ADAPT framework calls a special methodcall in the local replication interface taking the
request and the component handle as input. The replication algorithm, if it wants to execute the request
on the component, it calls the corresponding method of the component handle with the request as input
parameter. The component handle performs the call on the corresponding component and returns the
response to the replication algorithm. The replication algorithm can do additional work (e.g., replicate
state), and then return to the framework with the response.

In an EJB invocation, the stub interface is actually downloaded from the remote server during EJB
lookup. In a web service invocation, though, the client cannot download code from the server (and would
not trust it if it did). In a real web-service application, server-specific logic on the client side would be
spelled out in the service contract, and implemented by the client. For convenience in prototyping,
though, we maintain the distinction between the two interfaces even with web services.

For EJBs, we distinguish two interception points on the server side, that is, 3 is split into 3a and
3b. 3a comes before the component reference has been resolved. Breaking here allows the replication
algorithm to instantiate the component itself, if necessary. The second point (3b) comes after all the EJB
properties, such as security and transactions, have been set up. At this point, the replication algorithm
can get and set the component’s state, attach a listener to the transaction, etc. For web services, there is
no useful distinction to be made between these two points, because the invocation model for Axis objects
is much simpler than for EJBs. Thus, we provide interceptiononly at 3b.

2.2.3 Requests and responses

In the ADAPT invocation API, arequestis passed to a component, yielding aresponse. Generally,
request and response are opaque to the replication algorithm. However, in a request, we allow the repli-
cation algorithm to read the name of the method that is being invoked (or, for a web-service component,
the operation). This permits the algorithm to classify the methods of a component, and treat them differ-
ently. For example, if it has access to more information about the application (perhaps an extra descriptor
provided by the developer), it might distinguish between read-only and read-write methods.

When the invocation completes normally, the response encapsulates the return value (or, for a web
component, the SOAP response). In this case, the replication algorithm cannot examine the content.
When the invocation throws an exception, though, this is wrapped in a special response which provides
the details of the exception and identifies its source. If theexception was thrown by the component itself
(developer-written code), the replication algorithm should simply pass the response back, where it will
be handled by the calling component. If the exception is thrown by the system or framework, for example
when the server crashes, the client-side replication code can catch this and “fail over” to another server
before returning to the caller. If the exception is thrown bythe replication algorithm, the replication
algorithm is free to examine the exception details and handle them as it chooses.

Both requests and responses can be tagged with “headers”. These are arbitrary key-value pairs,
which are transmitted along with the content of the message,but they are visible only to the replication
algorithm. The key must be a string; the value may be of any class that can be serialized in the invocation.

Replication Tools Final 8

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

A common use for headers is to tag each request with a unique IDin order to guarantee that each request
will be executed exactly once, despite retransmissions andcommunication failures.

2.2.4 Transactions

J2EE models transactions with a standard API ([Sha03], chapter 4). This defines a transaction manager
which is called by clients, application components, and theserver itself, to begin and end transactions
and to register participants (in case of 2-phase-commit). And it defines a transaction, which may be
associated (one-to-one) with a thread. If so, transactional operations in that thread, such as database
access and EJB invocation, are logically contained within the transaction.

To let the replication algorithm follow the association of component invocations with transactions, we
provide two framework methods. If the bean uses container-managed transactions, then at interception
point 3b, the transaction will already have been associatedwith the thread. The algorithm can look it up
through the transaction manager. If the component manages transactions itself, through direct calls to
the coordinator, the framework notifies the algorithm through a callback.

To track the later commit and rollback of a transaction, the replication algorithm may attach a listener
in case of 2-phase-commit, using one of two interfaces defined by J2EE. One interface is notified after
the transaction has committed or rolled back; another actually participates in the two-phase commit.

If the replication algorithm wants to intervene more actively in local transaction processing, the
framework allows it to “wrap” the entire transaction manager, intercepting every transactional event. It
may choose to pass the event on to the underlying transactionmanager, or to perform its own distributed
logic, or both.

Another approach might have been to open the internals of thetransaction manager to the replication
algorithm. However, J2EE does not define these internals, sothis approach would have meant choosing
a particular transaction manager implementation.

2.2.5 EJB lookup mechanisms

We also allow the replication algorithm to intercept the lookup and instantiation mechanisms of EJB even
before the component itself is created. First, J2EE defines anaming service, JNDI. Each component
is registered with the JNDI service of its local server. To find the component, the client connects to
the service and looks up the component’s name. We allow the client stub to redirect the JNDI lookup
allowing the replication algorithm to provide a custom implementation of the interface. Second, the JNDI
lookup yields the home interface for the component, which provides methods to create new instances and
to find existing ones. The invocations of these methods are intercepted on both the client and server sides,
at points 2 and 3. On the client side, the replication algorithm may redirect the calls to another server;
on the server side, it may perform related actions (such as deployment) before allowing the server to
proceed.

2.2.6 Deployment

A component cannot be instantiated on a server unless it is deployed there, that is, its code, configuration,
etc., are available. Before replicating components acrossa cluster, an algorithm must ensure that they
are deployed on all servers.

In J2EE ([Sha03], chapter 8), components are deployed in archive files, with a specified filename ex-
tension and internal structure. Typically, this file is “delivered” to a server by being copied to a specified
directory. The server checks the directory at startup, and at regular intervals afterward.

Replication Tools Final 9

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

Our API provides a simple model for deployment information.Each component archive is repre-
sented by an identifying handle and a content object, which can be transmitted together or separately. At
startup, the replication algorithm can query the frameworkfor all the units that are currently deployed.
During runtime, the framework notifies the replication algorithm whenever a new unit is deployed. The
algorithm can transmit the handle to its peers, which can test whether the handle is deployed locally. If
not, they can deploy it through the framework, by providing the handle and the content object.

2.2.7 Further issues

The framework provides a server address class that encapsulates the IP address and ports for a server.
The replication algorithm can share addesses, and send a setof addresses to the client using response
headers. The framework also provides suspend and resume methods to block and unblock requests on
the local server. They can be used if, e.g., state transfer needs to block request processing for the time of
the transfer.

2.3 Implementation

We have implemented the replication framework by building on the open-source J2EE server JBoss [JBo03].
For web services, we used the SOAP engine Axis [Apa03], whichis integrated into JBoss. In each case,
the existing architecture provides hooks for interceptingand restart invocation. JBoss’s EJB implementa-
tion is structured around “interceptors”, a pattern which is built up into invocation “stacks” described by
a configuration file. Axis supports the handler model defined by JAX-RPC [Chi03]. A configuration file
defines the sequence of handlers to be executed before a service request is finally delegated to the service
object. We did not modify any of the Java source files in the JBoss or Axis distribution; instead, we
modified the configuration files, inserting our own interceptors and handlers into the existing invocation
paths. This will make it easier to port the framework to future versions of JBoss and Axis.

The performance of the framework was evaluated individually and performance results are presented
in [BBM+04]. Section 3 is based on the framework. It includes a performance analysis which also
evaluates the overhead of the framework.

3 EJB Replication

So far, we have developed two independent replication algorithms. One algorithm considers EJB replica-
tion. Clients access EJBs through the client RMI interface (which is similar to the servlet RMI interface).
The second considers web-service object replication, in particular, how to replicate the Axis web-service
objects. So far, however, these objects may not call other objects or components. D13 will discuss the
integration of these two replication algorithms into one algorithm where EJBs can be called from web-
services. In the current deliverable, we will discuss the two algorithms separately. This section focus on
EJB replication, Section 4 will present web-service replication. A detailed description and performance
analysis for EJB replication is provided in [WKM04]. Here, we only highlight the main features.

3.1 Model and Assumptions

Since methods on EJBs are usually called within the context of transactions, we have to keep transactions
in mind when we do application server replication. In particular, we want our replication algorithm
to have two important properties. (i) The replicated systemshould provide the same degree ofstate

Replication Tools Final 10

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

consistencyas the non-replicated J2EE in the non-failure case. In a non-replicated system, if a transaction
commits, both the database and the EJBs within the application server should reflect the changes of this
transaction. If the transaction aborts, if full state-consistency is required, none of the changes should
remain. Database systems provide efficient abort mechanisms. Within J2EE, application programmers
can specify acompensationmethod for each business method that will be called by the server in case
of an abort, undoing the state changes performed within the application server. If state consistency
is relaxed, only the database changes are cancelled, the changes in the EJBs remain. In a replicated
environment, we have to extend this definition. Changes of EJBs performed by a committed transaction
should be reflected on all server replicas and the database, changes of aborted transactions should not
remain on any server with full state consistency, and shouldbe reflected in all replicas with relaxed state
consistency. (ii) The system should provideexactly-oncetransactions, i.e., as long as the client does
not crash, a transaction is executed exactly once (if the client crashes the semantics should beat-most-
once). That is, even if a replica crashes during the execution of atransacton, the others will continue and
terminate the transaction as if no crash had happened.

The implemented algorithm makes a couple of assumptions. Weassume that the nodes running ap-
plication servers can fail by crashing (no byzantine failures). We assume reliable, asynchronous commu-
nication and no network partitions. The algorithm in the next section is able to handle network partitions,
and we believe that we can use a similar mechanism for the samepurpose. Furthermore, we assume both
clients and database do not crash and the connection to the database is reliable. Of course, our final goal
is to provide web-service access to the EJBs, and web-service clients can easily fail. Such failure can
easily be handled by simply not sending a response to the client. Sections 6 and 7 discuss how database
replication approaches can make databases reliable. The integration of a replicated database with the
replicated application server is topic of D13. The replication of clients is currently not considered but we
might considers this in future work.

In regard to the application server, the current implementation makes a couple of assumptions, some
of which will be relaxed in the near future. (i) We assume bothclient and EJBs (except of SLSB) follow
the typicalrequest/replyprotocol. The caller of an EJB submits a request to the EJB, and is blocked
until it receives a reply. This is a typical programming model, and hence, we believe it is not a severe
restriction. Consequently, SFSBs do not need any concurrency control since they are associated with
a single client with at most one outstanding request. (ii) Weassume CMT where all methods have the
transaction attribute set torequired. Our current efforts eliminate this restriction. (iii) In the description
of this deliverable, we assume that a regular J2EE server (without replication) correctly handles state
consistency and at-most-once execution in the failure-free case. The case for relaxed consistency can
be handled with an easy extension of the algorithm but is omitted for space reasons. (iv) If the J2EE
server crashes, the J2EE server’s state and its connectionsto the database will be lost, and the database
aborts all active transactions. That is, the database contains the changes of all committed transactions
but no changes of aborted transactions or transactions active at the time of the crash. We tested with
DB2 that this database behavior is, in fact, true. (v) We assume that J2EE will eventually give a client
a response (either the application dependent response or anexception if the server crashes). This is
standard behavior of J2EE. (vi) Finally, we do not discuss the case where a transaction accesses more
than one database. In principle, our algorithm can handle this. The current implementation, however,
does not provide the functionality since we have encountered some problems with the XA interfaces of
the database systems.

Replication Tools Final 11

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

Container

Transaction Manager

Client
 Data

RMI Request r

i

Application server

EJB

EJB

EJB

Transaction t
 i

r

i

Figure 3: Typical Execution Flow of a J2EE server

3.2 Replication Algorithm

Our replication scheme uses passive replication to allow non-deterministic execution, and to avoid redun-
dant computation. For EBs, we choose cold replication sincechanges are always written to the database
at commit time by default. SFSBs use warm replication to achieve faster failover, and alleviate the load
on the database. Group communication (GCS) is used for this purpose (see D2). Since our main goal is
state-consistency, we use eager replication. Any lazy approach makes non-determinism hard to handle
and typically does not allow for a generally applicable consistent solution. We split the protocol into five
different parts. Theclient protocolexecuted at the client side is responsible for resubmittingrequests in
case of server crash. At the server site, aprimary protocolruns at the primary and abackup protocol
runs at the backups during normal processing. Furthermore,a failover protocolruns at the new primary
when the old primary crashes, and arecovery protocolis used when new replica joins the replica group.
Currently, there is only one primary executing all request.In principle, requests of different clients could
be executed at different primaries to allow for load balancing. We are currently implementing this exten-
sion. Due to space limitations, we keep the protocol description rather high-level. The interested reader
is referred to [WKM04].

3.2.1 Client protocol

The basic task of the client protocol is to forward a client request to the current primary. The client
protocol maintains a list of server replicas, and a pointer to the replica it believes is the current primary.
New server lists are piggybacked by response messages of theprimary. The client protocol also attaches
unique request ids to requests. If the response to a request is an exception indicating a server crash, the
client protocol asks each server in the server list whether it is the new primary and resubmits the failed
request with the same id to the next new primary.

3.2.2 Primary Protocol

Let’s first recall the execution logic of a container managedtransaction in a regular J2EE model as
depicted in Figure 3. When the container intercepts a clientrequest, it first calls the transaction manager
(TM) to begin a new transaction, then forwards the request to theEJB and waits for the response, then
calls theTM to commit the transaction, and finally returns the response to the client. Each call to an
EJB carries the identifiertxid of the transaction that is associated with this call.

The primary protocol extends now this basic scheme. For eachrequest, it keeps track of its id, the
associatedtxid, the response to the client when existing, and a list of updated EJBs. Areplication
manager RMintercepts the following actions. (i) It intercepts thebegincall to theTM to keep track
of the txid associated with the request. (ii) It intercepts requests toEJBs. When a client request comes

Replication Tools Final 12

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

in, it first checks whether already a response for this request exists. If yes, the response is returned.
Otherwise, the corresponding action on the EJB is executed,and if the EJB is updated, the RM keeps
track of this (state changes are detected by comparing pre- and post state). The response created by the
EJB is kept together with the request in a hashtable. This is only done if it is the response returned to
the client (note that subrequests create sub-responses that need not be kept). (iii) The RM also intercepts
commitrequests. Acommittingmessage is FIFO multicast containing, among other, request, response,
state of all changed SFSBs, identifiers of all changed EBs, and some other things. A marker is inserted
in the database containing thetxid. When it is guaranteed that all backups have received the message
(uniform reliable delivery), the database transaction is committed, and response is returned to the user.
A committedmessage is multicast to the backups to speed up failover (notneeded for correctness). We
will discuss transaction abort later.

3.2.3 Backup protocol

The backup protocol used during normal processing is designed to put as little load as possible on the
backups so that they can be used for other purposes, too. In particular, it does not immediately apply all
state changes. An EJB might be changed by subsequent transactions – applying all these changes would
waste resources because at the time of failover, only the last state is relevant.

When the backup receives acommittingmessage it temporarily stores it in a queue. Upon receiving
the correspondingcommittedmessage, thecommittingmessage is parsed, and the request/response pair
stored in a hashtable. For all EJBs listed in the message, if they have not yet been initialized, this will be
done. Additionally, for each existing EJB, the last state iskept as presented in the message (not applied
to the bean).

3.2.4 Failover protocol

When a backup receives a view change message from the GCS, it checks whether the current primary
is still member of the view. If not, it determines whether it is the new primary (using any deterministic
mechanism). If it is the new primary, the failover protocol starts. During failover, client requests asking
whether this is the new primary, are blocked. Once failover is completed, the replica will confirm that it
is now primary.

A simple failover protocol does the following. For eachcommittingmessage for which no corre-
spondingcommittedmessage was received, we check whether the corresponding transaction has com-
mitted at the database or not. For that, we check whether we find the correspondingtxid marker in the
database. If we find the marker, the database transaction hascommitted, and hence, the changes on the
EJBs indicated in the message have to be considered. If thereis no marker, then the primary crashed after
sending thecommittingmessage and before committing the database transaction. Hence, we discard the
content of the message. Then, for all initialized SFSBs, we set the state to last recorded state. For all
initialized EBs, we load the state from the database (can be done upon first request on this EB). Then,
the replica switches to the primary protocol.

At this time, we briefly want to discuss why the combination ofprimary, backup and failover pro-
tocols guarantees state consistency and exactly-once execution in case of primary crash. Recall that we
assume that if the primary crashes all database transactions active at the primary will be automatically
aborted at the database. The primary might crash at several places during the execution of a transaction.
(i) If the primary crashes before sending thecommitting message, the backups do not have the SFSB
state changes, and the database transaction will be aborted. This provides state consistency. When the

Replication Tools Final 13

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

client resubmits the request to the new primary, it will simply be handled as a new request. (ii) If the
primary crashes after sending thecommitting but before committing the transaction, the backups have
not received thecommitted message. Hence, at failover, the new primary checks at the database and will
detect that the correspondingtxid cannot be found in the database. Hence, it knows that the transaction
has not committed, and will disregard thecommitting message. Again, the system behaves as if the
request had never been processed. (iii) If the primary failsafter committing the database transaction but
before sending thecommitted message, the backup will again look for the marker in the database. This
time, it will find the correspondingtxid. Hence, it will consider the state of the EJBs in thecommitting

message. Again, application server and database have a consistent state. When the client resubmits the
request to the new primary, it will not be re-executed but theresponse will be immediately returned. (iv)
When the primary fails after sending thecommitted message, the backup does not need to check for
the marker to know that the transaction has committed. Our algorithm provides exactly-once execution
and state consistency by using the marker mechanism to determine whether the database transaction has
committed, and by resubmitting client requests if the primary crashes before the client receives a result.

Our failover implementation does not exactly follow the approach above but only lazily applies state.
That is, during failover, we do not set the state of all beans.Instead, we switch to normal processing once
all committingmessages are handled. Then, the state of SFSBs is lazily set whenever a bean is accessed
for the first time by a new request. This procedure slows down request execution shortly after failover
but makes the failover itself much faster.

During normal processing, a transaction can abort at several places, e.g., when theTM executes
the commit request or in the middle of the execution of an EJB method. Depending on the degree of
state consistency this will require to send according information to the backups in one or both cases.
The important thing is that if the transaction aborted because of regular application semantics, if full
state consistency is requested, none of the replicas may install the EJB state changes triggered by this
transaction. For space reasons, we do not discuss the various scenarios in detail but refer to [WKM04].

3.2.5 Recovery protocol

When a failed replica recovers or a new replica joins it has tofirst receive the current state, and then will
become a backup. Currently, our implementation requires that at least one backup already exists. Thus,
when a new or failed replica joins, one of the existing backups, referred to as thepeer replicawill send its
current state to the joining replica. We use an agreement protocol among the backups to agree on the peer.
The chosen peer generates arecoverymessage containing allcommittingmessages, all request/reply
pairs, and the necessary information about all changed EJB using point-to-point communication. While
waiting for therecoverymessage, the joining replica might have already received messages from the
primary (it starts receiving messages when the GCS deliversthe view change). A special mechanism is
used to determine whether the content of some of these messages is already contained in therecovery
message sent by the peer replica.

3.3 Performance Evaluation

We implemented the algorithm based on the ADAPT framework taking advantage of the interceptor
points, and the set/get state methods on beans. As group communication system, we used JBora on top
of Spread (see D2 for details).

We evaluated our system running three different suites of experiments. First, we use the ECperf
benchmark [Sun03] to evaluate the performance on a “real” application and compare it with JBoss’s

Replication Tools Final 14

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

0

50

100

150

200

250

300

350

400

450

1
 3
 5
 7
 9
 11
 13
 15
 17
 19

Injection Rate

R
e
s
p
o
n
s
e
 T

im
e

(m

s
)

Replicated Jboss

Clustered Jboss

Jboss+Framework

Non-Replicated Jboss

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0
 2
 4
 6
 8
 10
 12
 14
 16
 18
 20

Injection Rate

B
u
s
in

e
s
s
 O

p
e
ra

ti
o
n
s

(p

e
r

m
in

u
te

)

Replicated Jboss

Clustered Jboss

Jboss+Framework

Non-Replicated Jboss

(a) Response Time (b) Throughput

Figure 4: ECperf Comparison

existing clustering technique. For this case, we used JBoss3.2.3. A second test suite presents a series
of micro benchmarks that show the performance for differentcomponents (SFSB vs. EB), and database
access patterns. The third experiment suite evaluates failover. All tests were run on a cluster of PCs
(3.0 GHz Pentium 4 with 1 GB of RAM) running RedHat Linux. The configuration consists of one
machine emulating clients, one machine running the web server (if needed), two machines running JBoss
application server instances, and one machine running DB2 as our database system.

3.3.1 Evaluation based on ECperf benchmark

ECperf [Sun03] emulates businesses involved in manufacturing, supply chain and order/inventory man-
agement. The application is split into four domains: customer, manufacturing, supplier domain, and
corporate. The main configuration variable is thetransaction injection rate(IR) which refers to the rate
at which a specified subset of business transaction requestsare injected into the system.

In this experiment, we evaluate the following architectures. (1) A regular, non-replicated JBoss
server as baseline for comparison. (2) The JBoss server including the framework without the replication
protocol to evaluate the overhead of an abstraction layer useful for reusability and platform independence.
(3) Two application server replicas using our eager replication protocol. (4) Two application server
replicas using JBoss’s own clustering solution1. For both (3) and (4) we did not take advantage of load
balancing, and submitted all requests to one server.

Figure 4 shows the results of the experiment measured over the steady state phase of the run (the
ramp-up and ramp-down phases are ignored). Figure 4(a) shows the average response time for order
entry transactions of the customer domain. At low throughput, the framework adds around 10 ms to
the non-replicated JBoss, our protocol adds 25 ms while JBoss’s clustering method adds around 100
ms. This gives an overhead of around 25% for our protocol plusthe framework, and 70% for the JBoss
clustering. The latter performs so badly because it sends state after each method invocation while our
solution only communicates at the end of the transaction. Asa comparison, in [MMSN+99] the authors

1JBoss’s clustering solution [JBo] uses passive, warm, and eager replication. Each replica can act as a primary for a client
session. If a client request triggers execution on several stateful components, state transfer takes place individually once ex-
ecution on the component has terminated. Although eager, problems occur if state propagation for some of the components
was successful but the primary fails before committing the transaction at the database. In this case the backups have a par-
tially replicated state while the database transaction aborted. Hence, neither state consistency nor exactly-once semantics are
provided.

Replication Tools Final 15

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

indicate around 15% overhead for FT-CORBA (primary-backup) compared to non-replicated CORBA.
With increasing IR, the response time in all systems increases steadily until saturation point. The gap
between non-replicated and replicated JBoss increases slightly but steadily, while it remains nearly the
same for the clustering approach until around 11 IR beyond which it becomes significantly worse. More
information about the saturation point can be found in Figure 4(b). This figure uses the averagebusiness
operations per minuteto represent the maximum achievable throughput when the IR increases. The
maximum in each curve shows the system shortly before saturation. The replicated server is saturated
at an IR of 15 (due to CPU overhead). JBoss’s clustering saturates at 17 IR (also due to CPU) while
the non-replicated JBoss saturates at 19 IR (in this case, DB2 is the bottleneck). The reason for earlier
saturation of our approach compared to the clustering approach is higher CPU overhead (keeping old
responses to guarantee exactly-once, keeping informationduring transaction execution in order to send
all state in a single message).

In summary, we believe that our approach provides acceptable performance considering the strong
consistency guarantees that it provides. It compares favorable with JBoss’s clustering mechanism. Never-
theless, the overhead is not negligible. We believe, however, that more “engineering” work in optimizing
our in-memory data structures could lead to further improvement.

3.3.2 Component Analysis

In order to better understand where to start such optimizations, our second experiment suite looks at
the overhead of replication for different components and component combinations. We evaluate cases
(i) where no database access takes place, (ii) where the database is accessed but no conflicts occur, and
(iii) where database conflicts occur. We tested with only SFSB, and with a combination of SFSB and
EB. Detailed results are given in [WKM04]. In case (i) execution is very fast both for the replicated
and non-replicated system, and less than 10 ms. However, theoverhead of replication is nearly 100%
and a replicated system has only half the maximum achievablethroughput than a non-replicated system.
Since no database access takes place, the system is completely CPU bound. Since the the non-replicated
system takes half the time to execute one request compared tothe replicated system, it can execute double
as many requests before saturation. In (ii) the replicationoverhead is around 20%. Response times are
generally higher. The saturation point of the replicated system is at around 75% of the saturation point
of a non-replicated system. In (iii), response times and max. achievable throughput are generally much
worse than in (ii) due to blocking behavior at the database. The relative behavior of the replicated
system compared to the non-replicated system is, however, similar to case (ii). In all cases, using EBs
slows down both replicated and non-replicated systems in similar ways compared to a system with only
SFSBs.

3.3.3 Failover

We evaluated the failover costs after different running times of ECPerf. Since failover time only depends
on the number ofcommittingmessages for which nocommittedmessage was received, it is independent
of the running time before the crash but depends on the load shortly before the crash. If the load was
high, manycommittedmessages are missing. At medium loads, the failover time wasaround 100 ms, at
high loads it rose up to 160 ms. This can be considered as very fast failover.

Replication Tools Final 16

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

3.4 Related Work

Most J2EE products provide some form of EJB replication. WebLogic [BEA02] uses passive, warm, and
lazy replication. A single primary server processes requests, and propagates the state soon after returning
the response to keep replicas as consistent as possible. JBoss’s clustering solution [JBo] uses passive,
warm, and eager replication. Each replica can act as a primary for a client session. If a client request
triggers execution on several stateful components, state transfer takes place individually once execution
on the component has terminated. Although eager, problems occur if state propagation for some of the
components was successful but the primary fails before committing the transaction at the database. In
this case the backups have a partially replicated state while the database transaction aborted. Pramati
[Pra02] uses passive, cold, and eager replication. Each replica can be the primary. State changes are
immediately written into the database. If the primary crashes in the middle of execution, the database
transaction aborts and with it the state changes of the application server. None of the above solutions
provides exactly-once semantics, and only Pramati guarantees state consistency.

As an example of replication in CORBA, the Eternal system [NMMS01] is based on the FT CORBA
architecture [OMG00]. Eternal supports active replication and both warm and cold passive replication.
Determinism is required even for passive replication sinceit uses lazy propagation. The primary repli-
cates the state to backups periodically in form of checkpoints. Between two checkpoints, all messages
from clients and the database are logged. At failover, the new primary first restores the state of the last
checkpoint, and then replays logged requests. During replay, outgoing messages are suppressed. To
guarantee exactly-once semantics at the database level, Wei Zhao et al. [ZMMS02, ZMMS03] extend the
Eternal system to use a distributed out-bound gateway to replicate transactional context. Phoenix/COM+
[BLW02] is based on .NET using passive, cold, and lazy replication. It has similarities to the Eternal
system. States are replicated periodically, and requests between two checkpoints are logged. However,
it distinguishes nondeterministic events from deterministic events. For nondeterministic events, it uses
eager replication to avoid the problems that exists in Eternal. However, it is unclear how to determine
whether an event is non-deterministic or not. Neither Eternal nor Phoenix/COM+ explicitly discuss state
consistency.

There are also some general solutions that are not developedwithin the context of a specific appli-
cation server architecture. e-Transactions [FG00a] offerexactly-once semantics for stateless application
servers. When a replica of an application server executes a request, it inserts the response and a marker
into the database. If the server crashes before sending the response and the client resubmits the request to
the new primary, the new primary checks whether a marker for this request exists in the database. If yes,
the response will be retrieved and returned without re-executing the request. X-ability [FG00b] provides
a general replication solution for stateful servers, however, it is presented on a very abstract level.

Eternal, Phoenix/COM+, e-Transactions, and X-ability areall implemented in different environments
with different conditions. In our approach, we have taken advantage of some of J2EE’s properties leading
to a different solution.

3.5 Current Work

Our current work attempts to enhance the current system in several ways. (i) We are extending the
system to handle network partitions. This is quite simple ifthe network partition occurs between client
and server cluster. However, when it occurs between the servers, things are more complicated because
then a client might resubmit a request to a backup or a backup becomes a new primary although the old
primary has not failed. (ii) We are implementing the algorithm for relaxed state consistency. (iii) We

Replication Tools Final 17

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

want to implement the version which allows multiple database instances and a 2-phase-commit protocol.
(iv) We are evaluating the impact of different failover strategies and the costs of recovery. (v) We are
looking into more advanced transaction models. For instance, a transaction can span more than one
request, or a request can span more than one transaction. In the first case, failover must be able to handle
transactions for which a client has received some but not allresponses. In the second case, failover must
be able to handle requests for which some but not all transactions have committed. These transactions
can be BMT or CMT. We are also planning to support the ONT modeldescribed in D4 (or rather, the
successor of D4). (vi) The system has to be extended to handleweb-service interfaces. Currently, only
RMI clients are supported. (vii) We will provide a module to connect the replicated application server
with one of the replicated database systems we have developed.

4 Web-service Object replication

The second algorithm developed within the ADAPT framework focuses on the replication of Axis-based
web-service objects. While it is similar in many regards to the EJB replication algorithm described in
the previous section, the focus of the work has been quite different. A detailed description of the work
presented in this section can be found in [BPA04]. We only summarize the results here.

4.1 Model and Assumptions

We will outline the model and assumptions by pointing out thecommonalities and differences to the
EJB replication algorithms. In the web-service replication algorithm, the components to be replicated
are Axis web-service objects. These objects can be session oriented and maintain state of the lifetime of
a session. In this case, each object is always associated with a single client. The web-service algorithm
currently completely focuses on the replication of this object state. That is, execution of methods may
only change the state of the object and must not have any side effect outside of this object. In particular,
calls of this object to EJBs or a database are not considered.

While this model is somehow simpler than for EJB replication(no database access, no subrequests,
no transactions), the properties to be supported are quite similar. (i) The replicated system must provide
the same consistency as the non-replicated system in a non-failure case. In particular, the current imple-
mentation provides sequential consistency (given any set of operations, the execution of these operations
produces the same results as if these operations were executed in some sequential order; and, the opera-
tions for each client appear in this sequence in the same order in which they were issued by the client).
(ii) Exactly once execution is provided. If the replicated environment receives multiple copies of a given
update request, the operations should only be executed once. Moreover, the system responds to each
copy of the request with the result of that only execution.

Compared to the EJB algorithm, the web-service algorithm provides correctness not only in the case
of server crashes, but also in case of network failures. Network might partition between the client and
the server replicas, or between the individual server replicas. Handling network partitions of the first
case is especially important when clients access the service through the Internet which is the typical
scenario for web-services. Networks partitions in the second case can occur if the servers reside on
different subnets within a company. A crashed process may recover as a new process, and partitions
are eventually repaired. The system is asynchronous in thatno bounds are assumed on communication
delays or relative speed of processes. Message corruption and byzantine failures are excluded.

Objects export read and write operations. Write operationsare neither assumed to be idempotent nor
commutative. The application programmer is assumed to use aspecial naming mechanism to indicate

Replication Tools Final 18

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

whether an operation is a write or a read. The replication overhead takes only place for write operations.

4.2 Replication Algorithm

4.2.1 Client Protocol

The basic task of the client protocol is to forward a client request to any server replica. The addresses
of server replica can be obtained from external naming services. Furthermore, for each object belonging
to the client, the client keeps a counter indicating the number of updates performed on the object. This
counter is piggybacked with each request sent. This allows the server replica to check whether its copy
of the object is up-to-date. The client protocol attaches a unique request ids to requests. The response
to a request can be OK, and then is returned to the client. It can also be UNABLE indicating that the
contacted server replica does not have an up-to-date version of the object or is not allowed to currently
perform operations. Furthermore, it can be UNKNOWN indicating that another server replica might
have executed the response but this replica does not have theresponse. In the last two cases the client
protocol might either try another server replica or give up.

4.2.2 Server Protocol

Each server replica keeps for each object the number of updates that have been performed on the object
(as far as the replica is aware of), and the last response to the client.

Group Membership Servers communicate with each other using group communication. See D2 for
details. We assume that the group communication system provides primary-partition membership, i.e.,
one in which all group members have the same perception of thegroup membership. For example, in
case the set of replicas splits in two or more disjoint sets because of a network failure, then the GC-layer
automatically selects one of these sets to be the next view and forcibly expels from the group the replicas
that happen to be on the wrong side of the partition (by delivering to these replicas a special ”shutdown”
view change). All replicas receive view changes in the same order. Our prototype selects the primary
partition as the one containing a majority of statically known number of replicas. Replicas that enter the
primary partition (i.e., those that recover after a failureor that were isolated because of a network failure
that has repaired) can execute client requests only after acquiring the up-to-date version of all relevant
information through a procedure called state transfer.

Normal Processing Each client is connected with one single replica at a time, say R. R can execute
a request submitted by the client only if the request identifies an object for which R holds a version of
the object that is more recent than the latest version accessed by the client. It first checks whether the
replica is “sufficiently up-to-date” for the specified object. If not, it responds to the client by declaring
that the replica is UNABLE to execute the request. Otherwise, if the request is a read, it executes the
request completely locally and responds. If the request is an update, the replica first inspects whether the
replica is in the primary partition and the state transfer tothat replica has completed. If this is not the
case, the replica responds to the client by declaring that the replica is UNABLE to execute the request.
Otherwise, the replica inspects whether the update requestis a duplicate or is fresh. If it is a duplicate,
it sends immediately the result to the client, without carrying out the update again. If it is fresh, it (i)
executes the update on a copy of the object; (ii) propagates the new version and associated result to the
other replicas using total order uniform reliable multicast, waits to receive the message locally, and then

Replication Tools Final 19

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

sends the result to the client. A client that does not receivethe response to an update or that observes the
connection breaks before receiving such a response, may submit the very same request immediately, to
either the same replica or another one. There is no hypothesis whatsoever on the retransmission policy
used by clients.

The reason why each update is performed on a copy of the objectis because the propagation at
step (ii) might fail. In particular, the replica might issuea multicast and then receive a“shutdown” view
change before receiving the corresponding message. In thiscase the replica is forcibly expelled from
the primary partition and it cannot tell whether the replicas in the primary partition have received the
message, and thus updated the object accordingly, or not (both outcomes are possible, depending on the
protocols within the GC layer and on ”when” the failure occurred) . It follows that the replica must drop
the updated copy of the object and must respond an UNKNOWN status to the client.

Recovery Finally, upon receiving a view change, a replica checks whether any replica (including itself)
has just entered the primary partition. In this case, all replicas in the primary partition execute a function
which triggers the state transfer from a replica with an up-to-date version to all new replicas. It might
be impossible to determine whether there exists a replica with an up-to-date version. This is the case,
e.g., when the group reforms after the primary partition ceased to exist and at least one server replica has
crashed since the last existence of the primary partition. Such solutions require that each server replica
saves (part of) its state on stable storage, and are currently not implemented. State transfer takes place
without suspending the execution of the service.

4.3 Implementation

The implementation described in [BPA04] and summarized in the following was based on Apache Tom-
cat. The algorithm has been implemented based on the ADAPT replication framework developed for
JBoss. The implementation described in [BPA04] was based onApache Tomcat without using the frame-
work. Each server runs an instance of Tomcat/JBoss and a Spread daemon. Each server is also equipped
with two Java packages developed by us: JBora, that implements our group communication interface
(see Deliverable D2); JMiramare, that implements the replication algorithm on top of JBora. JMiramare
is for its most part Tomcat-independent, i.e., it may be executed unchanged in other servlet containers
(this is the portion that has been totally rewritten for use with the replication framework). Each client
is equipped with a small stub that includes within the requests the information required by the replica-
tion algorithm and that takes care of retransmissions and fail-over as appropriate. For the web-service
implementation, SOAP messages include a replication header for storing all necessary information. It is
possible that the WSDL description of web service contains the information whether a method is a read
or a write.

4.4 Performance Evaluation

A performance analysis of the Tomcat-based prototype is given in [BPA04]. The results refer to a ser-
vice consisting of 3 replicas, each placed on a Dell OptiplexGX260 (PIII 800 MHz, 512 MB) running
Windows 2000 Professional. Communication occurs through a100 Mb switched Ethernet. We used Sun
Microsystems’ JVM 1.4.0 and Tomcat 4.0.6. We configured the JVM executing Tomcat with -Xms128m
(initial heap space 128 MB) and -Xmx384m (maximum heap space384 MB). All experiments began
with a warm-up phase of a couple of minutes. Data collected during warm-up were discarded. We
simulated an increasing number of clients by running a publicly available tool on another machine on

Replication Tools Final 20

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

the same Ethernet (http://grinder.sourceforge.net). Each simulated client constructs a request, waits the
response and sends the next request. Construction of a request involves parsing the response to the pre-
vious request. All the results below have been obtained by filtering out data collected during warm-up.
We have verified that the client machine was not the bottleneck in any experiment.

Salient results of this analysis include what follows. First, usage of the standard Java serializa-
tion mechanism is likely to deliver poor performance. This mechanism leads to a rather verbose and
redundant description of objects. Since replication makesheavy use of multicast communication, the
resulting overhead turns out to be excessive. Usage of customized serialization procedures is therefore
highly advisable, and implemented in our prototype. Another interesting finding is that, with 100%-write
workload, the replicated implementation delivers a betterthroughput than the non-replicated one (sin-
gle replica). This positive result was unexpected. In the replicated implementation each replica has to
participate in the execution of all requests (recall that weare considering 100%-write workload). Thus,
we expected that the throughput of the non-replicated implementation (single replica) would be an upper
bound for the throughput of the replicated implementation.In fact, since receiving a multicast involves
a significant cost at the group communication layer, we thought the upper bound would not even be
achieved. This expectation turned out to be wrong. The reason is because we underestimated the cost
of receiving and parsing HTTP requests, constructing and sending HTTP responses. In the replicated
implementation this cost is fairly distributed amongst replicas, each replica being responsible for one
third of the total number of requests. As it turns out from ourexperiments, distributing this cost may
partly compensate the overhead intrinsic to replication. Finally, we have verified that when the workload
includes “read” operations the throughput of the replicated implementation indeed grows. We expect
that when the workload is close to 100% “read”, the replicated implementation should exhibit a close-
to-linear scalability, i.e, a throughput close tok times the throughput of the replicated implementation,
k being the number of replicas. However, we did not address this scenario in our experiments. Latency
results showed an increase of around 12 ms for the replicatedsystem compared to the non-replicated
system. Most of this time is spent for the mulitcast. In our setting this was in increase of around 30%.
However, since in a real system the client is probably connected through a slow wide-area link, the 12
ms additional overhead will barely be recognizable by the client.

We want to point out that by making explicitly visible the nature of each operation (“read” vs.
“write”), this information can be exploited by the replication infrastructure in order to improve per-
formance. When this information is not available, a replication infrastructure can only handle each op-
eration as if it were a “write”, or perform expensive state comparisons, thereby introducing unnecessary
overhead.

4.5 Related Work

Our algorithm is such that the service stops being availablewhen there is no majority of replicas that
are active and mutually connected. That is, when an excessive number of failures occur, the service
stops responding to requests because it is no longer able to guarantee state consistency and exactly-once
execution (in practice, the service will have to reboot as a new incarnation). While this feature is not
peculiar of our approach (e.g., [FG01]), it is worth to recall that many replicated services take quite
a different approach, in which certain failures may cause the system to silently stop guaranteeing the
above properties — the system continues to respond but its behavior no longer satisfies one or both
of the properties, without any explicit notification of thisfact. As an example, consider the session
failover support in replicated servers based on IBM WebSphere [UAB+00]: the conversational state for
a client (i.e., an HTTP session) is kept in a database shared by all replicas, so that it remains available

Replication Tools Final 21

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

in case the replica connected with client fails; since session information is accessed very frequently, a
caching mechanism is used to decrease the overhead related to database access; this mechanism is such
that, should a failure occur within a certain vulnerabilitywindow, some updates already seen by the
client could be (silently) lost. As another example, consider some recent implementations of distributed
data structures (DDS) [GBHC00]. A DDS is an object (e.g., a hash table) partitioned and replicated
across several replicas. The service implementation, thatensures excellent performance and scalability,
is based on the assumption that the network between replicasnever partitions. Should such an event
occur, the service could silently stop satisfying its consistency criterion. While the above design choices
are sensible in many environments, in particular, where state-of-the-art performance and scalability are
essential, we are interested in exploring other design trade-offs, more suitable for application domains
where it may be preferrable to eliminate the potential for inconsistencies even at some cost in terms of
performance and scalability. Indeed, many environments donot need state-of-the-art performance and
scalability [VvRB98] and leading research groups believe that “it is time to broaden our performance-
dominated research agenda”[PBB+02].

5 Database Replication: An overview

For a long time, database replication has been considered anexcellent solution to increase throughput
(more replicas can serve more requests), decrease responsetimes (distribute the load), and provide fault-
tolerance. Replication, however, has the challenge of replica control. When one replica is updated, the
changes have to be propagated and applied at the other replicas, and the different copies of the database
must remain consistent despite concurrent updates. Standard correctness criteria is 1-copy-serializability,
i.e., the concurrent execution of a set of transactions on the different replicas should have the same effect
as a serial execution on a centralized database. As such, replica control has to be combined with or at
least must be aware of the concurrency control mechanisms used to determine the execution order of
operations at each individual replica. Early research solutions focused on fault-tolerance [BHG87], and
were seldomly implemented in commercial systems, which mostly offered ad-hoc solutions violating
traditional transactional properties in order to achieve acceptable performance [Gol94]. A thorough
analysis by Gray et.al. in 1996 [GHOS96] claimed that existing approaches scale badly, and are not
suitable for modern applications. Their analysis revived research in database replication leading to many
new solutions that attempt to eliminate the limitations pointed out by [GHOS96], while still providing
global serializability, e.g., [ABKW98, PGS98, BKR+99, HAA99, BGRS00, KA00a, KA00b, PMS99,
JPPMKA02, ACZ03b, ACZ03a, CMZ03].

Database replication can be implemented at two levels, eachlevel with its own advantages and disad-
vantages. The data replication tool can be implemented as a middleware on top of off-the-shelf database
systems, or it can be integrated into the kernel of a databasesystem. In a middleware based approach,
the database system itself, often needs no changes. Instead, all transactions have to be submitted to a
middleware layer which coordinates the execution on the database replicas. This has the advantage that
replica control is an additional module and separated from the complex database kernel. Additionally, it
might have the potential of being able to work in a hetereogenous environment, although few solutions
support this. On the negative side, the middleware layer hasto reimplement concurrency control since it
has no control over the concurrency control module within the database systems. Since the middleware
typically only has access to the SQL statements submitted bythe transactions and does not know the
concrete tuples to be accessed by these statements, concurrency control is typically on a rather course
level, e.g., a table. If the middleware has a centralized component, e.g., a centralized schedule, this sin-

Replication Tools Final 22

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

gle point of failure is an additional disadvantage. Also, the middleware is yet another indirection in the
execution flow leading to an even more complex architecture.

In contrast, when the replication tool is integrated into the database system, more options for opti-
mization exist. The replication tool can take full advantage of its access to other internal components
and the homogeneity of the system, and hence, is hopefully more efficient. For instance, it can directly
interact with the often tuple-based concurrency control ofthe database system, and does not need to im-
plement its own concurrency control mechanism. Furthermore, direct access to the tuples and/or logs is
given allowing for an efficient propagation of changed tuples. Another advantage is that the replica tool
comes within the same software package as the database system making installation and usage easier.
Commercial systems are able to sell their replication modules at high price for exactly these reasons. As
its disadvantage, an integrated solution only works in a homogeneous environment. Furthermore, it has
the challenge, that the replication tool should ideally be an addition to the system without major changes
to the existing component. In particular, in case the extended system runs in non-replicated mode, repli-
cation related code should not be executed and the semanticsand principle protocol of the centralized
system should remain unchanged.

We have developed database replication tools both at the middleware layer and as integrated solution.
In the following, we will present both of the approaches and current activities.

6 Postgres-R(SI): An integrated database replication solution

6.1 Introduction and Overview

6.1.1 Postgres-R: the predecessor

A first version of Postgres-R was already developed in 2000. It integrated replication into the kernel
of PostgreSQL, version 6.4. At this time, PostgreSQL’s concurrency control was based on strict two-
phase locking. Postgres-R integrated a replication algorithm based on group communication (GCS). The
execution is as follows. A transactionTi, consisting of a sequence of read r(X) and write w(X) operations
on tuples X can be submitted to any replica. This replica isTi’s local replica andTi is local at this replica.
All other replicas areremotereplicas forTi andTi is remoteat these replicas.Ti is first completely
executed at the local replica, and write operations are collected within awriteset. At commit time, the
writeset is multicast to all replicas using the total order multicast. All replicas now use the total order
delivery to determine the serialization order. Whenever two operations conflict they will be executed in
the order the writesets were delivered. Since this is the same at all replicas, all replicas serialize in the
same way. No complex agreement protocol or distributed concurrency control is necessary. In the locking
based approach of Postgres-R, when a writeset of a transaction Ti was delivered and there was a local
transactionTj whose writeset was not yet delivered and it had a read or writeoperation that conflicted
with one of the write operations ofTi, Tj was aborted. IfTj had already sent its writeset, the other
sites have to be informed about the abort. This guaranteed 1-copy-serializability. Furthermore, uniform-
reliable delivery is used to avoid lost transactions. When the sender receives a writeset itself it knows
that everybody else will or has received it. Only one total order message is sent within the transaction
boundaries. 2-phase-commit is avoided, and a transaction can commit locally without waiting that other
replicas have executed the writeset. When replicas fail, the GCS informs the remaining replicas. They
simply can continue as a smaller group. This approach avoidsmany of the limiations pointed out by
[GHOS96], at least for local area networks.

While failures are handled transparently by the GCS, recovery requires to transfer the current database

Replication Tools Final 23

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

state to the recovering replica. [KBB01] proposes a suite ofrecovery mechanisms for this purpose. In
[Cho03], one of these approaches is implemented into a master/slave version of Postgres-R.

The PostgreSQL community showed great interest in Postgres-R. The project became an open-source
effort hosted at the GBorg website (http://gborg.postgresql.org/project/pgreplication/projdisplay.php) in
a plan to move the prototype to a production mode system.

6.1.2 Snapshot Isolation

However, since the development of Postgres-R, PostgreSQL has moved to a new version 7 with a com-
pletely new concurrency control module. Now, PostgreSQL does not provide anymore classical seri-
alizability, but provides the isolation levelSnapshot Isolation. This is a very common isolation level,
implemented in similar way in Borland [Bor04], Oracle [Ora01], and also offered by Microsoft SQL
Server. This isolation level can be implemented using multi-version concurrency control. Snapshot iso-
lation allows some non-serializable executions, but it provides much more concurrency for read-only
transactions, and hence is very useful for read intensive applications. We can expect that even more
database systems will provide this isolation level in the future. The basic idea is to keep several versions
of a data object. Read operations read from a committed ”snapshot” of the database, and work com-
pletely independent from writes. Conflicts are only detected between write operations. We denote an
object version to be committed at the time the transaction that created the version commits. Furthermore,
we define two transactions to be concurrent if neither terminated (commit/abort) before the other started.
A concurrency control system providing SI must obey the following rules. (i) Each first write operation
w(x) of a transactionT on objectX creates a new version ofX, (ii) subsequent readr(X) andw(X)
of T onX access the newly created version, and (iii) ar(X) of T onX not preceded by aw(X), reads
the last version that committed beforeT started. Finally, if two concurrent transactions write objectX,
at least one of them must abort.

6.1.3 Postgres-R(SI)

As a result, we had to redesign Postgres-R’s replication algorithm to work with the new concurrency con-
trol method of PostgreSQL, v.7. Posgres-R(SI) has a similararchitecture as the original Postgres-R using
a total order multicast. Also the execution model remains the same (first local execution, then sending
the writeset determining the global serialization order).What is new is the integration of replica control
with the multi-version concurrency control algorithm of PostgreSQL, version 7. While the locking based
concurrency control of version 6 was encapsulated in a lock manager, the current algorithm heavily de-
pends on PostgreSQL’s multi-version storage system to detect write/write conflicts and determine the
snapshot of read operations. This required us to obtain a detailed understanding of PosgreSQL’s multi-
version system, and made it more challenging to extend PostgreSQL in a modular way without really
changing existing components. In the following, we shortlyoutline our algorithm, its implementation,
and a performance evaluation we conducted. For more detailed information, we refer to [WK04].

6.2 Replica and Concurrency Control

6.2.1 Concurrency control in PostgreSQL

In PostgreSQL, each tupleX is assigned a unique identifier which is common to all versions of X.
Each update creates a new version ofX. Concurrency control is a mixture of reading different object
versions, performing checks, and acquiring exclusive locks for write operations. Each transactionTi has

Replication Tools Final 24

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

two phases. In the execution phase it executes read and writeoperations. WhenTi performs a write
operationwi(X) on tupleX for the first time, it first performs aversion check. It checks whether there
is any concurrent transactionTj that updatedX and already committed. If this is the caseTi aborts.
Otherwise,Ti requests an exclusive lock onX. If the lock is granted,Ti creates a new version ofX and
performs the update on the new version. WhenTi performs a successive writewi(X), it simply uses
the previously created version. If there is already a lock,Ti’s request is appended to a waiting queue for
X. Upon being woken up by the transaction releasing the lock onX, Ti starts all over again with the
version check. WhenTi performs a read operationri(X), it either reads its own version if existing, or it
reads the version created by transactionTj such thatTj committed beforeTi started and there is no other
transactionTk that updatedX and committed afterTj committed and beforeTi started. The second
phase is the termination phase and very fast. Upon the commitrequest or abort forTi, the necessary
logging is performed,Ti releases all locks, and wakes up all transactions waiting for one of these locks.

Note that the version check for write operations happens before requesting the lock and will be
repeated if the lock can not be immediately granted. The locking procedure serializes conflicting write
operations. When a transactionTi holding the lock commits and wakes up a waiting transactionTj , Tj

performs again the version check which will fail sinceTi is concurrent and committed. IfTi aborts,Tj ’s
second check will succeed, and it will again request the lock.

6.2.2 Replica Control for PostgreSQL

In a replicated environment, we have to distinguish betweenlocal and remote transactions. As in the
centralized concurrency protocol of PostgreSQL, local transactions perform conflict checks and read
and write operations step by step whenever a statement is submitted. Remote transactions, however,
only have write operations that are all known at the time of writeset delivery. Furthemore, we must
guarantee that conflicting operations of both local and remote transactions are executed in the order of
writeset delivery. In order to achieve this without adding to much complexity, we decided to execute
all remote transactions serially. Or more precise, whenever a writeset is delivered for either local or
remote transaction, the transaction has to completely terminate before the next writeset is delivered. We
denote this as atomic in the outline of the algorithm given below. The description below is not exactly
the algorithm implemented in PostgreSQL. In order to shorten the text we had to simplify some issues
changing the semantics slightly at some points. See [WK04] for the exact algorithm.

Transaction identifiers In order to perform checks and retrieve tuple versions, PostgreSQL labels
each version with the local transaction identifier (TID) of the transaction who created the version (and
other identifiers which we do not discuss for lack of space). TIDs, however, are individual assigned by
different database instances. Hence, the TIDs for the same transaction might differ at different replicas.
Many components of PostgreSQL useTIDs in different ways, and hence, we do not want to change their
generation. Therefore, each transaction keeps locally itsTID. At the same time, each update transaction
will receive a global identifierGID, which will be the same at all replicas. TheGID of a transaction
will be used to match the different localTIDs created on different replicas. We generateGIDs without
extra coordination overhead by using the total order in which writesets are delivered. We keep aGID

counter at each replica. Whenever a writeset is delivered, the counter is increased and its current value
assigned asGID to the corresponding transaction. Furthermore, each replica keeps an internal table that
allows for a fast matching betweenTID and correspondingGID. Note that for a local transaction,TID

andGID are generated at different timepoints (start and later writeset delivery), for a remote transaction
both are generated at the same time (writeset delivery).

Replication Tools Final 25

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

Execution of local transactions For local transactions, the execution phase is the same as before.
Additionally, the updated tuples are collected in a writeset. WhenTi submits the commit request, and
Ti is read-only, it commits immediately. Otherwise the writeset WSi is multicast to all replicas using
total order multicast. The writeset also contains the setG which lists theGIDs of those transactions that
are not concurrent toTi, i.e., that terminated beforeTi started. The atomic commit phase forTi starts
upon delivery of the writeset. IfTi has not been aborted so far, theGIDi is generated, and recorded.
The rest is the same as the commit in the centralized case. IfTi is aborted sometime during execution
and before receiving its own writeset, it releases all locks. If the first waiting transaction for a lock is
a remote transaction, only the remote transaction is woken up. Otherwise, all waiting transactions are
woken up. (Explanation see below).

Execution of remote transactions For remote transactions the entire execution is atomic. Upon de-
livery of a remote writesetWSi with all updated tuples and setG, a transactionTi is started, itsGIDi

generated, and recorded together withTIDi. For each tupleX in the writeset,Ti checks whether there
exists a committed version labeled with a transaction whoseGID is not inG. If this is the caseTi aborts.
If no such version exists and there is currently no lock onX, thenTi gets the lock and performs the up-
date. If there are locks, execution onX is delayed until all tuples in the writeset have been checked. If
all checks have been successful, and there is a delayed update on a tupleX, Ti sends an abort request to
the transaction holding the lock. This transaction must be local (no concurrent remote transactions), and
its writeset is not yet delivered (because this would have lead to immediate commit). The local transac-
tion, upon completion of the abort, will grant the lock toTi. Once all updates have been performed,Ti

commits, and releases all locks. The next writeset can be processed.

Discussion Note that we only delay the execution for tuples for which a local transaction holds the lock.
All other updates are performed at the same time as the version check, avoiding to access a tuple twice
whenever possible. Note also that there is no version check upon writeset delivery of a local transaction.
If there is any conflict between a local transactionTi and a remote transactionTj whose writeset is
delivered beforeTi’s writeset and which committed,Ti would have been aborted byTj. Hence, upon
delivering the writeset forTi, if it is still alive, it has already passed the version checkimplicitly. Note
also that a local transaction can commit when its writeset islocally delivered. It does not wait until
the corresponding remote transactions have executed. The GCS guarantees that the writeset will be
delivered, and hence, executed at all replicas.

Although a local transaction on replicaR does not need to wait until the corresponding remote
transactions on the other replicas have executed, it might be indirectly delayed by the serial execution of
remote transactions executing locally onR. We suggest to perform what we call apre-lock phasethat
does not need to access tuple versions but which needs a separate lock tableLT completely independent
from the locking mechanism in PostreSQL. For space reasons,we do not discuss this approach here but
refer the interested reader to [WK04].

6.3 Implementation

Writeset The writeset contains for each SQL data manipulation statement (i.e., update, delete, insert)
for each changed tuple all modified attribute values and the corresponding attribute identifiers, and the
primary key values of the tuple. For SQL data definition statements (e.g., create table, create function,

Replication Tools Final 26

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

P
o
s
t
m
a
s
t
e
r

R
e
p
l
i
c
a
t
i
o
n

M
a
n
a
g
e
r

S
p
r
e
a
d

C
o
m
m
u
n
i
c
a
t
i
o
n

M
a
n
a
g
e
r

P
o
s
t
g
r
e
s
-
R
s
e
r
v
e
r

R
e
m
o
t
e

B
a
c
k
e
n
d

L
o
c
a
l

B
a
c
k
e
n
d

L
o
c
a
l

B
a
c
k
e
n
d

C
l
i
e
n
t
C
l
i
e
n
t

N
e
t
w
o
r
k

P
o
s
t
m
a
s
t
e
r

R
e
p
l
i
c
a
t
i
o
n

M
a
n
a
g
e
r

S
p
r
e
a
d

C
o
m
m
u
n
i
c
a
t
i
o
n

M
a
n
a
g
e
r

P
o
s
t
g
r
e
s
-
R
s
e
r
v
e
r

R
e
m
o
t
e

B
a
c
k
e
n
d

L
o
c
a
l

B
a
c
k
e
n
d

C
l
i
e
n
t
P
o
s
t
g
r
e
S
Q
L

Figure 5: Architecture of Postgres-R

etc.) the writeset simply contains the query text2. Remote replicas process the statements in the order
they appear in the writeset. For DDL statements, the execution path is the same as it is for a local
transaction (parser, planner, etc.). For DML statements, for each tuple to be changed, the remote backend
retrieves directly the valid version of the tuple using the index on the primary key skipping most of the
normal planning and execution steps.

Architecture Figure 5 depicts the architecture of Postgres-R(SI). In PostgreSQL, the postmaster pro-
cess listens for a connection request from a client, and thencreates a dedicated backend process which
will connect to the client and execute its transactions. Postgres-R(SI) extends PostgreSQL with three new
processes:remote backend, replication managerandcommunication manager. The original backends
are now calledlocal backends, and execute local transactions. A remote backend processes the writesets
of remote transactions. The communication manager’s only purpose is to hide the details of the GCS
(currently Spread). We will not mention it any further. The replication manager (RM) is the coordinator
of the replica control algorithm. The local backends createwritesets which are forwarded through the
replication manager and the GCS to the other replicas. When the replication manager receives a write-
set of a local transaction it forwards a confirmation messageto the corresponding backend. A remote
writeset is forwarded to the remote backend. Since only one writeset may be processed at a time, the
replication manager does not accept any writeset from the GCS until the local or remote backend have
confirmed that they have processed the writeset. Additionaltasks are necessary at the backends and the
replication manager to handle aborts correctly.

Implementation Details Weaddeda system table at each replica matching local transaction identifiers
with GIDs in order to perform the version checks appropriately and efficiently. Furthermore, we had
to enhancethe abort mechansim in order to allow a remote transaction toabort a local transaction. This
required a quite deep understanding of the signaling mechanism whithin PostgreSQL. The only place
where we really had tochangethe code was in the lock module. When a transaction joins the waiting
queue to acquire a lock, it is normally appended to the end of the queue. We could simply adjust this
procedure and put the lock request of the remote transactionat the head of the waiting queue. However,

2Not all DDL statements will be replicated. [Cho03] discusses which statements to replicate, which to only executed at the
replica they are submitted to, or which to disallow in a replicated system.

Replication Tools Final 27

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

(a) (b)

Figure 6: TPC-W: (a) Browsing (read-only) and (b) Ordering (update)

in PostgreSQL, upon releasing a lock, all waiting processesare woken up. Although they are woken up
in the order in which they are waiting, this does not guarantee that the lock is actually granted to the
first one in the queue due to possible race conditions of UNIX process scheduling. Hence, we had to
change the lock release procedure slightly. If a local transactionTi holds a lock and a remote transaction
Tj requests the lock, we put the lock request ofTj at the head of the waiting queue, and send an abort
signal toTi. WhenTi aborts and releases the lock, and it sees that the first waiting transactionTj is
a remote transaction (by checking whether it has already a GID), it only wakes upTj. The rest of the
waiting queue is passed toTj . When the remote transaction receives the lock, it wakes up the rest of the
processes in the waiting queue (in order to continue with thestandard PostgreSQL procedure). Note also
that remote transactions can only abort when failing a version check. Hence, remote transactions should
never invoke the deadlock detection routine. We achieve this by not setting the timer for the deadlock
detection.

6.4 Evaluation and Discussion

We evaluated the performance using two different applications. The first test suite uses a TPC-W bench-
mark variant to simulate a real-world application. The second test suite uses a 100% update workload.
All experiments are performed on a cluster of PCs (2.66 GHz Pentium 4 with 512 M RAM) running
RedHat Linux. For each experiment, we run at least 20000 transactions to achieve stable results. In here,
we only present results on the TPC-W benchmark. Further results can be found in [WK04].

We performed our tests using the OSDL-DBT-1 benchmark [Ope02]. It is a simplified version of
the TPC-W benchmark [Tra00] simulating an online bookstore. There are three different workload types
by varying the ratio of browsing to buying transactions: primarily shopping, browsing and ordering. In
our experiment, we choose the browsing workload, which contains 80% browsing transactions and 20%
ordering transactions. We have set up a two-tier testbed where the OSDL-DBT-1 driver is the front-
tier which directly connects to the database. There are 8 tables in the schema. The database size is
determined by the items and clients in the system. We use a very small configuration with only 1000
items and 40 clients. Larger sizes will only decrease conflict rates and increase disk I/O which will favor
the replicated approach. We performed the experiment with afixed number of 40 client connections.
The number of clients on each server and the load on each client is evenly distributed. The throughput
in transactions per second (tps) is controlled by the think-time parameter, i.e., the time a client waits
between two consecutive requests.

We run the experiment with a centralized, non-replicated server, and then with 5 and 10 replicas.
Figure 6 shows the client response time for browsing and ordering transactions when we increase the

Replication Tools Final 28

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

overall load to the system. For all graphs, the response timeincreases with increasing load since more
transactions concurrently compete for resources. The response time of the centralized system is much
worse than our replicated configuration, and can achieve a much lower maximum throughput. The rea-
son is that the server is overloaded very fast while in the replicated systems read-only transactions are
distributed among the replicas. Additionally, the centralized server has problems handling many clients.
The 10-replica system has smaller response times than the 5-replica system for a given throughput be-
cause read-only transactions are distributed over even more replicas. The only exception are update
transactions at 20 tps where the 5-replica system is better than 10 replicas. The reason might be that with
10 replicas, more update transactions are remote, and hence, it is more likely that a local update trans-
action has to wait for a remote transaction whose writeset isreceived earlier. At higher throughputs this
disadvantage does not show because the 10-replica system ismuch less loaded. In these experiments,
abort rates were always well below 1%, which shows that our system can handle real world conflict rates
even for very small database sizes.

However, scalability is not unlimited. Updates have to be performed at all replicas. If the update load
increases, each replica has less resources to execute queries. Hence, the performance gain from 5 to 10
replicas is not as big as from the non-replicated system to 5 replicas. More about this phenomena can be
found in [JPPMAK03].

6.5 Conclusion and Future Work

In summary, this experiment proves that the performance of our system is excellent for a real world
situation where most of the transactions are read-only. Ourreplication solution performs better than a
centralized approach by distributing the load and clients throughout the replicas in the system. Hence,
our approach implementing eager update everywhere replication within the database system is feasible
and performs well for read-world applications.

Our current efforts lie in the integration of an online recovery mechanism into Postgres-R(SI). Our
approach will be based on approaches in [KBB01] and use the implementation provided in [Cho03] as a
basis.

7 Middle-R: Database Replication at the Middleware Level

Our middleware based replication tool Middle-R also uses GCS as underlying communication mechan-
sims. Before the start of ADAPT, a prototype version of Middle-R existed to enable its evaluation
[JPPMKA02]. It provided access to a single evaluation database and did not provide access to arbi-
trary databases nor had any recovery facility implemented.Since the project start, Middle-R has evolved
to a product in which arbitrary databases can be used. It has been additionally extended with dynamic
adaptability features – the goal of Adapt – such as online recovery, dynamic load balancing and adaptive
load control. It has also been enhanced with replication-aware JDBC connectivity. We will outline these
advanced features in the following sections. For more detailed information, we will refer to the according
publications.

7.1 Overview

We first want to give an overview of the general architecture of Middle-R. [JPPMKA02] describes the
system in more detail. Middle-R is a cluster based database replication tool. The system consists of
N nodes (machines), each node hosts a database system and a Middle-R server. Each database system

Replication Tools Final 29

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

stores a full copy of the database (replica). The database application programs are written in the usual
way, using one of the standard database interfaces to interact with the database. Given a transaction
in form of an application program, the application programmer has to identify which data objects are
going to be accessed by the transaction. Object granularitycan be a table, or any application specific
granularity level. The application programs are then deployed within Middle-R, and can be called via
the Middle-R client interface (the newly developed JDBC interface is discussed in Section 7.4).

Middle-R is responsible for the execution of the application programs on the database replicas, and
performs concurrency and replica control. It uses the groupcommunication system (GCS) Ensemble
[Hay98] to disseminate information among the replicas. We use the total order multicast to determine
the execution order for conflicting transactions that want to access the same objects. In order to achieve
this, Middle-R performs its own lock-based concurrency control.

The system applies asymmetric transaction processing. Each update transaction is only executed at
one replica. The other replicas do not re-execute the transaction (neither read nor write operations) but
simply change the affected records which is usually faster than reexecuting the statement. This spare ca-
pacity can be used to process additional transactions. Asymmetric processing can outperform symmetric
processing [JPPMAK03], and might be the only feasible approach for database systems with triggers
or non-deterministic behavior. Hence, most commercial systems use asymmetric replication approaches
[Gol94]. In order to use asymmetric processing at the middleware layer, the underlying database system
has to provide a function to get the changes performed by a transaction (thewrite set), and a second
that takes the write set as input and applies it without re-executing the entire SQL statements. We
implemented this functionality for PostgreSQL and it is currently being implemented for MySQL and
Microsoft SQL Server. Oracle uses such mechanism for its ownreplication protocol [Ora01].

In order to share the load among all the replicas, we follow a primary copy approach. Each set of
data objects that can be accessed within a single transaction is assigned a primary replica that will be in
charge of executing programs that access this specific set. For instance, replicaN1 might be primary
of object set{O1} and replicaN2 of object sets{O2}, {O1, O2}. We allow transactions to access
arbitrary object sets, and overlapping sets might be assigned to different replicas. This requires a global
concurrency control. In contrast, disallowing overlapping object sets to be assigned to different replicas
would mean that we partition the data among the replicas, each replica being responsible for transactions
accessing object sets within its partition. In this case, each replica could use its own local concurrency
control strategy. However, we would disallow transactionsto access arbitrary object sets (spanning two
or more partitions) limiting transaction types.

The conflict-aware scheduling algorithm and its correctness can be found at [PJKA00]. We will
only outline it here. Let us first have a look atupdate transactionsthat perform at least one update
operation. The client can submit anupdate request, i.e., a request to execute an update transaction, to
any Middle-R server. This server multicasts it to all middleware servers using uniform reliable, total
order multicast. Upon receiving a request to execute transaction T delivered in total order, all servers
append the lock requests for objects accessed byT into the corresponding queues of the lock table (a
form of conservative 2PL locking). The primary executesT whenT ’s locks are the first in all queues.
It starts a database transaction, executesT ’s code, and retrieves the write set from the database. Then
it commitsT locally and reliably multicasts (without uniformity or ordering requirement) the write set
to the other Middle-R servers which apply it at their databases. The Middle-R server which originally
received the client request returns the commit confirmationonce it receives the write set (or after local
commit if it was the primary of the transaction). Since determining the total order can take a long time,
the system uses optimistic execution to increase performance. A detailed description of this feature can
be found at [PJKA00].

Replication Tools Final 30

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

For queries (read-only transactions), there exist severalalternatives. Firstly, they could always be
executed locally at the server they are submitted avoiding communication. However, this disallows any
form of load balancing, and if all requests are submitted to one server, this server will quickly become a
bottleneck. Since communication in a local area network is usually not the bottleneck, an alternative is
to also execute queries at the primary. Apart of load balancing issues this might lead to a better use of the
main memory of the database system since each replica is primary only of a subset of the data. Hence,
we can expect higher cache hit ratios at each replica [CAZ02]than if each replica executes any type of
query. In the primary approach, a query request is forwardedto all replicas, the primary then executes
the query, returns the result to the submitting Middle-R server and notifies the end of the query to all
replicas. Independently of whether a local or primary approach is used, the executing Middle-R server
might not need to acquire locks for queries but immediately submit them for execution if the database
uses snapshots for queries (as is done by PostgreSQL or Oracle).

The approach provides 1-copy-serializability because allreplica decide on the same execution order
of conflicting transactions due to the total order multicast. Even if the primary fails after committing
but before sending the changes, a new primary will take over and re-execute the transaction in the same
order due to the total order multicast.

7.2 Online Recovery

Replication aims to attain high availability by toleratingfailures of some replicas. In order to maintain
certain level of availability new replicas (crashed or new)should join the system. But what happens
during recovery? When a new replica joins the system its state must be updated according from the state
of running replicas. This state transfer or recovery is usually performed offline. However, if transaction
processing is stopped availability is lost. On the other hand, if transaction processing is not stopped (i.e.
online recovery), the recovery takes place whilst transactions are being processed in the system. In this
case, data consistency becomes an issue.

Middle-R has been enriched with online recovery ([KBB01]) to guarantee a high level of availability
[JPPMA02]. In this approach, replicas can play four roles: master of an object sets (the one that fully
executes update transactions modifying this object set, recovering replica (the replica that has joined the
system and needs to recover an up-to-date state of the database), recoverer replica of an object set (a
working replica that will transfer an up-to-date snapshot of the objects), and replicas not participating in
the recovery.

In Middle-R, objects have been assimilated to tables and therefore, recovery is based on the notion
of tables. One of the features of the online recovery of Middle-R is thateach table can be recovered
independently.

The online recovery works as follows. When a new replica joins the system, a short state transfer
takes place. In this state transfer the recovering replica indicates the last transaction it processed on each
table. Then, a set of replicas is selected as recoverers. Each of these replicas will recover a set of tables.
For the sake of simplicity, assume there is a single recoverer and that tables are recovered one by one. The
recoverer will send the relevant log records (those corresponding to the table being recovered that were
missed by the new replica) to the recovering replica. The recovering replica applies the corresponding
updates (the received log records).

Since the recovery is performed online, transactions can update a table whilst it is being recovered.
The recoverer will be able to process the updates of those transactions and send the corresponding log
entries to the recovering replica later. The recovering replica will discard the updates from those transac-
tions, since queueing them might result in running out of memory during long recoveries. The recovering

Replication Tools Final 31

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

replica will instead receive these updates from the recoverer.
When the recoverer reaches the end of its log for the table being recovered, it will send an end

recovery message to complete the recovery of the table. Uponreceiving this message, the master of that
table will send a message indicating the last transaction that will be considered part of the recovery. This
message will be used by the recoverer to determine which it isthe last log entry (updates) that it will
forward to the recovering replica. The recovering replica will use this message to discriminate when it
will stop discarding update messages on this table and startto queue them for their processing.

Once all tables have been recovered the recovering replica will become a regular working replica. It
has to be noted that a recovering replica can process transactions that access tables already recovered.
So, it can help to process the current load as soon as one tableis recovered.

Another feature of the online recovery is that it can deal with simultaneous and cascading recoveries
in an efficient way. Multiple replicas starting recovery at the same time will be recovered at the same
time exploiting the underlying broadcast network therefore, minimizing the consumed resources (CPU
and disk bandwidth from recoverers and network bandwidth).Cascading recoveries are also managed
efficiently. If a new replica joins the system when there is anongoing recovery, the set of tables yet to
be recovered in the ongoing recovery will be recovered simultaneously by the new recovering replica
and the recovering replica that was already engaged in the recovery process. This idea is extended to an
arbitrary number of cascading recoveries.

7.3 Load Balancing

7.3.1 Overview

A replicated database system can only then be used for scalability, if the load can be equally distributed
among all replicas, and none of the replicas becomes overloaded. In order to evaluate whether a database
system performs well, one of the target performance metricsis the throughput (rate of executed trans-
actions per time unit). This metrics depends on the workload(mix of transaction types), load (rate of
submitted transactions), cache hit ratio, load distribution among replicas, etc. Another important aspect
of the database system to work well under a given workload is themultiprogramming level(MPL), i.e.,
the number of transactions that are allowed to run concurrently within the database system. Initially,
when resources are freely available, then a high MPL boosts throughput. Also, if some transactions are
I/O bound, concurrent transactions might keep the CPU busy while I/O takes place. However, when
resources are highly utilized, or a single resource becomesthe bottleneck (e.g., the log), increasing the
MPL will only increase context switches, and hence, put evenmore restraint on the resources. Perfor-
mance is then lower than in a system with less concurrent transactions. Also, if conflict rates are high,
additional transactions will only lead to higher abort rates, and hence, wasted execution time.

In dynamic environments, workload and/or the load can change over time. As a result, the system
configuration has to be adapted dynamically, i.e., the MPL and the distribution of transactions across
replicas must be adjusted. An additional dynamic behavior is the crash of individual components. If a
node fails, the other nodes must take over the load of the failed node.

The contribution of our work lies in providing a hierarchical approach with two levels of adaptation
for Middle-R. At the local level, the focus is on maximizing the performance of each individual replica
by adjusting the MPL to changes in the load and workload. Middle-R maintains a pool of connections to
the database which is shared among transactions. The size ofthe pool determines how many transactions
are concurrently submitted to the database, and hence determines the MPL. At the global level, the
system tries to maximize the performance of the system as a whole by deciding how to share the load

Replication Tools Final 32

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

among the different replicas. Assigning object sets to primary nodes determines which transactions are
executed at which nodes. Given a static workload, an optimaldistribution of object sets can easily be
found. However, when the workload characteristics change over time, and a node becomes overloaded, a
reassignment is necessary. The challenge of performing these kinds of adaptation at the middleware level
is the reduced information that is available about the changes in behavior and internals of the database
making it hard to detect bottlenecks. At the local level, we use a feedback driven approach that adjusts
the MPL according to the observed throughput in the recent past. At the global level, we take the number
of transactions waiting at each node for execution, to evaluate the load in the system. In order to keep the
report reasonably short, we only present the general ideas behind the algorithms, and their performance.
A detailed description of the algorithms can be found in [MFJPK04].

7.3.2 Local Level Adaptation

At the local level, each middleware server is configured to maximize the performance of its local database
replica. Measurements have shown that Middle-R servers arelight-weight while the database servers are
the first to be the bottleneck [JPPMKA02]. Hence, controlling the MPL is an important step in dynamic
performance optimization, and is done by limiting the connection pool to the database replica.

Our solution to control the MPL is based on the feedback control approach proposed in [HW91].
Since it does not require database internal information like conflict rate, memory and other resource
consumption, etc., it is suitable for a middleware-based system. In a feedback system, one uses the output
of the system as an indicator whether the input of the system should be changed. [HW91] proposes to
take the transaction throughput as output parameter. In a system without control on the number of
concurrent transactions, the throughput of the database system usually rises with increasing the number
of transactions until the system saturates at a throughput peak. If the number of concurrent transactions
increases further, the database enters the thrashing region in which the throughput falls very fast until
it stabilizes at some low residual value. Figure 7, adjustedfrom [HW91], illustrates this behavior. The
x-axis depicts the MPL, the y-axis depicts the throughput achieved by the system with it, and the z-axis
shows how the curve changes over time assuming the workload changes over time. Our measurements
on a real database have shown that if the workload contains many complex read operations, throughput
is generally low but many many transactions should run concurrently, if the workload contains many
simple write operations, a high throughput can be achieved but only at small MPLs (basically serializing
writes). When now the workload moves from a read intensive workload to a write intensive workload,
so does the dependency between MPL and throughput.

Hence, we have two goals. Firstly, at any given time with a given workload, we have to determine
the optimal MPL, i.e., to deny newly submitted transactionsto execute whenever this would lead to
a load that cannot be handled anymore by the database. That is, we should set a MPL such that the
database system is never in the thrashing region. Theoptimal MPLis now defined as the MPL allowing
for the maximum achievable throughput. The second goal is toprovide dynamic adaptability, that is, to
adjust the MPL when the workload changes such that it is neverhigher than the optimal MPL. [HW91]
approximates the relationship between concurrent transactions and throughput at each time point with a
parabola. In order to estimate the coefficients, the system periodically measures the number of concurrent
transactions and the throughput. In order to capture the time dependency of the parabola, more recent
measurements are given a higher weight than older measurements. After each measurement period, the
optimal MPL is set to the number of concurrent transactions achieving the highest throughput. The
approach also addresses some stability problems. We have implemented this approach within Middle-R
using a incremental adjustment of the MPL. See [MFJPK04] forthe algorithm and details.

Replication Tools Final 33

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

1

1
3

2
5

3
7

C1

0

50

100

150

200

th
ro

u
g

h
p

u
t

(t
p

s
)

open

connections

time

Figure 7: Throughput as a function of MPL over time

7.3.3 Global Level Adaptation

A replicated database might potentially improve its throughput as more replicas are added to the system
[JPPMAK03]. However, this potential throughput is only reached under an even load in which all replicas
receive the same amount of work (assuming a homogeneous setting), which in practice might never
happen. If the load is concentrated at one replica, the throughput will be the throughput of a single replica
or even worse due to the overhead of the replication protocolto ensure consistency among replicas. Load
balancing is aimed to correct situations in which some replicas are overloaded, while others have still
execution capacity. This is done by redistributing the loadas evenly as possible among the replicas.
Therefore, any load balancing algorithm requires a means toestimate the current load at each replica.

Each Middle-R server knows the total number of concurrent active transactions in the system, since
requests are sent to all servers. All servers acquire locks for the objects accessed by transactions that
are kept until the transaction terminates locally. Hence, looking at its lock table, each server has a good
estimate of the total number of active transactions. For some of them the server is the primary copy. We
call these the local transactions of the server. Local transactions might either be executing or waiting for
locks or waiting for a free connection. For others, the server is not the primary. We call them remote
transactions. If it is an update transaction the server is waiting for the write set (it is still active at the
primary), or currently applying the write set or waiting fora free connection (the transaction is committed
at the primary). If it is a query, the write set message is empty and used as an indication of the end of the
query. Looking at this lock table, each server can estimate the number of local active transactions of any
other server S. This calculation can be done without any additional communication overhead.

The number of local active transactions at a server is a good estimate of the load at this server. If it is
known that different transaction types have different execution times, then this load metrics can be made
more precise by weighting the number of local active transactions with the observed average execution
time [ACZ03b]. The degree of balance is captured by the variance among the number of local active
transactions at each node. A variance of zero represents a evenly distributed load. On the other extreme,
the maximum variance is achieved when the entire load is concentrated on a single replica.

The load balancing algorithm is in charge of finding a primaryassignment of object sets to servers
that minimizes the variance. We have developed two algorithms. Our first algorithm uses a branch-and-
bound mechanism to assign object sets to primaries. At each step the algorithm selects an object set
that is accessed by many transactions and assigns it to all servers yielding a set of partial solutions. The

Replication Tools Final 34

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

10 MB Database - LQ1

0

10

20

30

40

50

60

70

80

90

0 5 10 15 20 25 30 35

open connections

th
ro

u
g

h
p

u
t

(t
p

s
)

100

200

300

400

500

load (tps)

10 MB Database - UPD8
0

50

100

150

200

250

0 100 200 300 400 500 600

load (tps)

th
ro

u
g

h
p

u
t

(t
p

s
)

1

2

3

4

5

10

20

adapt

open

connections

Adapt

23
4

1

5

a b

Figure 8: Adaptation under constant load

algorithm then traverses all partial solutions and prunes those that will not yield in a better solution than
the current one. The pruning is based on an estimation function which provides a lower bound of the
actual possible variance. Although the algorithm providesan optimal assignment, its use is limited to
small number of object sets and replicas since its computation time grows exponentially. Our alternative
is an inexpensive greedy algorithm which assigns at each step the unassigned object set with the highest
load to the replica with the smallest current load. Our comparison experiments show that in 80% of the
runs the greedy allocation is optimal and in the remaining runs it was very close to be optimal. The
execution time is highly reduced compared to the branch-and-bound algorithm.

A Middle-R serverS responsible for load balancing periodically calculates the load variance and runs
the greedy algorithm if it exceed a given threshold. The new assignment will only be applied if it leads
to a significant improvement.S multicasts a load balancing messageml to all servers to inform about
the new assignment using the total order multicast. Transactions received beforeml are still executed at
the old primaries, transactions received afterml at the new primary.

7.3.4 Experimental Results

A detailed performance analysis is presented in [MFJPK04].In here, we only summarize the results.
Experiments have been performed on 10 machines, each with two processors AMD, 512 MB, and 60 GB
disk, interconnected with a 100-MBit switch.

Local Adapatability We first performed a series of preliminary results. In each test run, we used a
different workload (update intensive vs. query intensive,small database vs. large database), and then
checked what it the maximum achievable throughput when we vary MPL and the load submitted to the
system. We determined that depending on the workload, size of the database, and the load submitted to
the system, a different MPL provides the maximum achievablethroughput. The goal of our local adap-
tation mechanism is that this optimal MPL is automatically selected without an external administrator
indicating the type of workload, the size of the database or the load. As an example of its performance,
Fig. 8 presents for update intensive (a) and query intensive(b) workloads at a small database size of
10MB, what is the maximum achievable throughput, when MPL isset to fixed values, and we vary the
load submitted to the system. Additionally, the figures contain a curve of what is the throughput achieved
by our local adaptation algorithm. We can see, that for all loads (x-axis) and workload types ((a) and (b)),

Replication Tools Final 35

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

it achieves a nearly optimal throughput by choosing the optimal MPL automatically. In an experiment
where we chose an MPL far of being optimal at system startup, we evaluated the time the system needed
to calculate the optimal MPL. It took around 5 seconds to adjust. This means that our algorithm works
well if workload changes occur at most in minute intervals which we believe is quite realistic.

Global Adaptability To test global adaptability, we first tested the maximum achievable throughput
in a system where the load is evenly distributed among all replicas, and the throughput achievable when
all load goes to one replica (uneven distributed) and there is no adaptation. Then we tested a system
where originally all load goes to one replica but the global adaptability algorithm is in place. The result
shows that after an initialization time, the system with global adaptability moves from the low maximum
throughput of the unbalanced system to the high maximum throughput of a perfectly balanced system.
The transition needed around 4 seconds. We performed these tests for various loads, workloads, database
sizes, and number of replicas, all with similar results.

Tests combining both local adaptation and global adaptation showed that both algorithms worked
smoothly with each other leading to an optimal MPL and load distribution for various kinds of workloads,
and number of database replicas.

7.4 JDBC Connectivity

In order to provide connectivity with Java applications, such as the application server, a JDBC driver
has been developed for Middle-R. JDBC drivers were designedto contact a single database and not a
replicated database. In order to support the access to Middle-R, a set of mechanisms have been built into
the Middle-R JDBC driver:

• A replica discovery mechanismhas been incorporated into the JDBC driver. The database IP ad-
dress is an IP multicast address that is used by the driver to multicast a discovery message. Replicas
(Middle-R instances) answer to this message with their IP addresses. From the set of collected ad-
dresses the JDBC driver tries to establish a TPC connection with one of them (traversing the set if
necessary). Once the connection is established, all the client requests are submitted to this replica
through the TPC connection. The replica multicasts the request to all replicas.

• A fail-over mechanism. In case the replica with which the driver is connected fails(or the connec-
tion fails), the driver tries to connect with one of the otherreplicas using the IP addresses collected
through the discovery process. If none of the addresses work, it retries again the discovery process.
Since the last request made to the failed replica might be or might not be multicast to the rest of
the replicas, this last request is in doubt (i.e., it could have been submitted and the reply was not
received). For this reason, a duplicate removal mechanism is included as well. Connections are
uniquely identified as well as requests submitted through them. If a request is submitted twice or
more due to the fail-over, it is removed by Middle-R. This canbe done thanks to the unique iden-
tifiers of the connection and the requests. Replicas only need to recall the last request submitted
and its reply (if it was performed). Upon the reception of a request that was previously submitted,
there are two possibilities: 1) There is no reply recorded. In that case the request is processed
(since it has not been processed by the working replicas) andthe reply returned; 2) There is a reply
recorded. Then, the request has already been processed. Thereply is returned and the request
discarded. Note that this mechanism is very similar to the mechanisms presented in Sections 3 and
4 for exactly-once execution.

Replication Tools Final 36

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

• A object set discriminator. This discriminator parses the SQL statement and determines whether it
is a query or an update transaction. Additionally, it determines which tables are being accessed and
in which mode. It also finds out whether the statement is an update of single tuples identified by
their primary key. All this information is packed with the request to help Middle-R to discriminate
the object set of the transaction.

The driver is currently being enriched with an additional mechanism to enable its use by replicated
clients such as the replicated application server:

• A connection serialization interface. This interface enables to serialize the state of a connection
that includes the unique connection identifier and the identifier of the last request submitted. That
way the connection can be checkpointed to another replica and resume the connection. In case
of duplication of request, the duplication removal mechanism guarantees exactly once semantics.
This mechanism will support as well active replication. Theconnection is established at one of
the active client replicas and then propagated to the remainder client replicas. From then on, the
duplicate removal enforces the exactly once semantics.

References

[ABKW98] T. Anderson, Y. Breitbart, H. F. Korth, and A. Wool.Replication, consistency, and prac-
ticality: Are these mutually exclusive? InACM SIGMOD Conf., 1998.

[ACZ03a] C. Amza, A. L. Cox, and W. Zwaenepoel. Conflict-aware scheduling for dynamic content
applications. InUSENIX Symp. on Internet Technologies and Systems, 2003.

[ACZ03b] C. Amza, A. L. Cox, and W. Zwaenepoel. Distributed versioning: Consistent replication
for scaling back-end databases of dynamic content web sites. In Middleware, 2003.

[Apa03] Apache Web Services Project. Axis SOAP library, version 1.1, June 2003.
http://ws.apache.org/axis.

[BBM+04] O. Babaoglu, A. Bartoli, V. Maverick, S. Patarin, and H. Wu. A Framework for Prototyp-
ing J2EE Replication Algorithms. InProc. of the Int. Symposium on Distributed Objects
and Applications (DOA), 2004. accepted.

[BEA02] BEA Systems Inc.BEA WebLogic Server Programming WebLogic Enterprise JavaBeans,
release 7.0 edition, September 2002.

[BGRS00] K. Böhm, T. Grabs, U. Röhm, and H.-J. Schek. Evaluating the coordination overhead of
synchronous replica maintenance in a cluster of databases.In Euro-Par, 2000.

[BHG87] P. A. Bernstein, V. Hadzilacos, and N. Goodman.Concurrency Control and Recovery in
Database Systems. Addison Wesley, 1987.

[BKR+99] Y. Breitbart, R. Komondoor, R. Rastogi, S. Seshadri, andA. Silberschatz. Update propa-
gation protocols for replicated databases. InACM SIGMOD Conf., 1999.

[BLW02] R. Barga, D. Lomet, and G. Weikum. Recovery guarantees for general multi-tier aplica-
tions. InProc. of the Int. Conf. on Data Engineering, San Jose, California,USA, 2002.

Replication Tools Final 37

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

[Bor04] Borland. Interbase Documentation, 2004.

[BPA04] A. Bartoli, M. Prica, and E. Antoniutti. A replication framework for program-to-program
interaction across unreliable networks and its implementation in a servlet container. Tech-
nical report, DEEI University of Trieste, 2004. Accepted for publication in Concurrency
and Computation: Practice and Experience (subject to minorrevisions).

[CAZ02] A. L. Cox C. Amza and W. Zwaenepoel. Scaling and Availability for Dymaic Content
Web Sites. Technical Report TR-02-395, Rice University, 2002.

[Chi03] R. Chinnici. JavaTM API for XML-based RPC: JAX-RPC 1.1, 2003.
http://java.sun.com/xml/jaxrpc/index.jsp.

[Cho03] M. Chouk. Master–slave replication, failover and distributed recovery in PostgreSQL
database. Master’s thesis, McGill University, June 2003.

[CMZ03] E. Cecchet, J. Marguerite, and W. Zwaenepoel. RAIDb: Redundant array of inexpensive
databases. Technical Report 4921, INRIA, 2003.

[DeM03] L. G. DeMichiel. Enterprise JavaBeansTM Specification, Version 2.1, November 2003.
http://java.sun.com/products/ejb/docs.html.

[FG00a] S. Frølund and R. Guerraoui. A pragmatic implementation of e-transactions. InProc. of
Symp. on Reliable Distributed Systems (SRDS), Nürnberg, Germany, 2000.

[FG00b] S. Frølund and R. Guerraoui. X-ability: a theory of replication. InProc. of Symp. on
Principles of Distributed Computing (PODC), Portland, Oregon, USA, 2000.

[FG01] S. Frølund and R. Guerraoui. Implementing e-transactions with asynchronous replication.
IEEE Transactions on Parallel and Distributed Systems, 12(2):50–97, 2001.

[GBHC00] S. Gribble, E. Brewer, J. Hellerstein, and D. Culler. Scalable, distributed data structures
for internet service construction. InProceedings of the Fourth Symposium on Operating
Systems Design and Implementation, 2000.

[GHOS96] J. Gray, P. Helland, P. O’Neil, and D. Shasha. The dangers of replication and a solution.
In ACM SIGMOD Conf., 1996.

[Gol94] R. Goldring. A discussion of relational database replication technology.InfoDB, 8(1),
1994.

[HAA99] J. Holliday, D. Agrawal, and A. El Abbadi. The performance of database replication with
group communication. InInt. Symp. on Fault-tolerant Computing, 1999.

[Hay98] M. Hayden. The Ensemble System. Technical Report TR-98-1662, Department of Com-
puter Science. Cornell University, January 1998.

[HW91] H. Heiss and R. Wagner. Adaptive Load Control in Transaction Processing Systems. In
Proc. of 17th VLDB, 1991.

[JBo] JBoss Group. JBoss. http://www.jboss.org/.

Replication Tools Final 38

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

[JBo03] JBoss Group. JBoss 3.2.3, November 2003. http://www.jboss.org/.

[JPPMA02] R. Jiménez-Peris, M. Patiño-Martı́nez, and G.Alonso. Non-Intrusive, Parallel Recovery
of Replicated Data. InIEEE Symp. on Reliable Distributed Systems (SRDS), 2002.

[JPPMAK03] R. Jiménez-Peris, M. Patiño-Martı́nez, G. Alonso, and B. Kemme. Are quorums an alter-
native for data replication.ACM Transactions on Database Systems, 28(3), 2003.

[JPPMKA02] R. Jiménez-Peris, M. Patiño-Martı́nez, B. Kemme, and G. Alonso. Improving the scala-
bility of fault-tolerant database clusters. InProc. of Int. Conf. on Distributed Computing
Systems, 2002.

[KA00a] B. Kemme and G. Alonso. Don’t be lazy, be consistent:Postgres-R, a new way to imple-
ment database replication. InInt. Conf. on Very Large Databases, 2000.

[KA00b] B. Kemme and G. Alonso. A new approach to developing and implementing eager
database replication protocols.ACM Transactions on Database Systems, 25(3), 2000.

[KBB01] B. Kemme, A. Bartoli, and O. Babaoglu. Online Reconfiguration in Replicated Databases
Based on Group Communication. InProc. of the Int. Conf. on Dependable Systems and
Networks, 2001.

[MFJPK04] J. M. Milan-Franco, R. Jiménez-Peris, M. Patiño-Martı́nez, and B. Kemme. Adaptive
distributed middleware for data replication. InMiddleware, 2004. accepted.

[MMSN+99] L. E. Moser, P. M. Melliar-Smith, P. Narasimhan, L. Tewksbury, and V. Kalogeraki. The
Eternal System: An Architecture for Enterprise Applications. In Int. Enterprise Dis-
tributed Object Computing Conference, September 1999.

[NMMS01] P. Narasimhan, L. E. Moser, and P. M. Melliar-Smith. State Synchronization and Recov-
ery for Strongly Consistent Replicated CORBA Objects. InProc. of the IEEE Int. Conf.
on Dependable Systems and Networks(DSN). IEEE Computer Society Press, 2001.

[OMG00] OMG. Fault Tolerant CORBA. Object Management Group, 2000.

[Ope02] Open Source Development Lab. Descriptions and Documentation of OSDL-DBT-1,
2002.

[Ora01] Oracle. Oracle 9i Replication, June 2001.

[PBB+02] D. Patterson, A. Brown, P. Broadwell, G. Candea, M. Chen,J. Cutler, P. Enriquez, A. Fox,
E. Kiciman, M. Merzbacher, D. Oppenheimer, N. Sastry, W. Tetzlaff, J. Traupman, and
N. Treuhaft. Recovery-oriented computing (roc): Motivation, definition, techniques, and
case studies. Technical Report UCB CSD-02-1175, UC Berkeley, Computer Science,
2002.

[PGS98] F. Pedone, R. Guerraoui, and A. Schiper. Exploitingatomic broadcast in replicated
databases. In D. J. Pritchard and J. Reeve, editors,Euro-Par, 1998.

[PJKA00] M. Patiño-Martı́nez, R. Jiménez-Peris, B. Kemme, and G. Alonso. Scalable Replication
in Database Clusters. InProc. of Distributed Computing Conf., DISC’00. Toledo, Spain,
October 2000.

Replication Tools Final 39

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

[PMS99] E. Pacitti, P. Mine, and E. Simon. Fast algorithms for maintaining replica consistency in
lazy master replicated databases. InInt. Conf. on Very Large Data Bases, 1999.

[Pra02] Pramati Technologies Private Limited.Pramati Server 3.0 Administration Guide, 2002.
http://www.pramati.com.

[Sha03] Bill Shannon.JavaTM 2 Platform Enterprise Edition Specification, v1.4. Sun Microsys-
tems, Inc., November 2003. http://java.sun.com/j2ee/1.4/docs/.

[Sun03] Sun Microsystems, Inc. ECperfTM specification: 1.1 final release, November 2003.
http://java.sun.com/j2ee/ecperf/.

[Tra00] Transaction Processing Performance Council. TPC Benchmark W, 2000.

[UAB+00] K. Ueno, T. Alcott, J. Blight, J. Dekelver, D. Julin, C. Pfannkuch, and T. Shieh.WebSphere
Scalability: WLM and Clustering. IBM RedBooks SG246153, 2000.

[VvRB98] W. Vogels, R. van Renesse, and K. Birman. Six misconceptions about reliable distributed
computing. InProceedings of the 8th ACM SIGOPS European Workshop, 1998.

[WK04] S. Wu and B. Kemme. Postgres-R(SI): Combining replica control with concurrency con-
trol based on snapshot isolation. Technical report, Schoolof Computer Science, McGill
University, 2004. submitted for publication.

[WKM04] H. Wu, B. Kemme, and V. Maverick. Eager Replication for Stateful J2EE Servers. InProc.
of the Int. Symposium on Distributed Objects and Applications (DOA), 2004. accepted.

[ZMMS02] W. Zhao, L. E. Moser, and P. M. Melliar-Smith. Unification of replication and transaction
processing in three-tier architectures. InProc. of the Int. Conf. on Distributed Computing
Systems (ICDCS), Vienna, Austria, July 2002.

[ZMMS03] W. Zhao, L. E. Moser, and P. M. Melliar-Smith. Design and implementation of a plug-
gable fault tolerant CORBA infrastructure. InProc. of the Int. Parallel and Distributed
Processing Symp., Fort Lauderdale, California, 2003.

Replication Tools Final 40

