
ADAPT
IST-2001-37126

Middleware Technologies for Adaptive and

Composable Distributed Components

Project funded by the
European Commission under the
Information Society Technologies
Programme of the 5th Framework

(1998-2002)

Security and Trust in Composite Services

Deliverable Identifier: D12
Delivery Date: 19 August 2004
Classification: Public Circulation
Authors: Santosh Shrivastava
Document version: Final, August 2004

Contract Start Date: 1 September 2002
Duration: 36 months
Project coordinator: Universidad Politécnica de Madrid (Spain)
Partners: Universitá di Bologna (Italy), ETH Zürich (Switzerland), McGill

University (Canada), Universitá degli Studi di Trieste (Italy),
University of Newcastle (UK), Arjuna Technologies Ltd. (UK)

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

CONTENTS

Dependencies with other deliverables .. 2
1. Introduction .. 2
2. Requirements and Architectural Concepts ... 3

2.1. Conversations .. 3
2.2. Contract mediated conversations... 4

3. Non-repudiated Interactions ... 6
4. Contract Monitoring and Enforcement... 9
5. Concluding Remarks .. 12
References .. 12

Appendix: Component Middleware to Support Non-repudiable Service Interactions14
1. Introduction .. 14
2. Motivating example.. 15
3. Building blocks for trusted interaction ... 16
4. Component-based implementation... 24
5. Related work... 29
6. Conclusions and future work.. 29

Trust and Security in Composite Services 1

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

Dependencies with other deliverables
This report describes how trust and security issues can be addressed in composite
services (CS). ADAPT deliverable report D9 (CS Middleware Architecture) gave the
overall architecture of CSs within the context of virtual organisations [1]. Composition
and enactment of CSs was described in ADAPT deliverable reports D6 (Service
Specification Language) and D7 (Composition Language) [2,3]. The work described
here has been carried out in collaboration with IST Project IST-2001-34069: “TAPAS
(Trusted and QoS-Aware Provision of Application Services). In particular, this report
describes how the ideas presented in TAPAS deliverable Reports D5 (TAPAS
Architecture: concepts and protocols) and D9 (Component Middleware for Trusted
Coordination) [4,5] can be used within ADAPT. A research paper based on the work
reported here is attached in the appendix.

1. Introduction
Presence of a wide variety of services and resources over the Internet creates new
opportunities for providing value added, inter-organisational services by composing
multiple exiting services into new Composite Services (CSs). This naturally leads to
resource sharing across organisational boundaries. An inter-organisational business
relationship is commonly referred to as a virtual organisation (VO). Whether in the
context of large-scale scientific experiments, eCommerce, eGovernment or any other
collaborative effort, organisations need cost-effective ways of finding, purchasing and
managing services performed by other organisations. It is therefore necessary for
organisations to be able to set-up and manage business links with other organisations in
a rapid, dynamic and flexible manner. A VO however, blurs the distinction between
'outsiders' and 'insiders' and yet, organisations forming a VO will want to preserve their
individual autonomy and privacy. A central problem in VO management is therefore
how organisations can regulate access to their resources by other organisations in a way
that ensures that their individual policies for information sharing are honoured.
Regulating access to resources by other organisations is made difficult as the
organisations might not trust each other. Organisation will therefore require their
interactions with other organisations to be strictly controlled and policed. How can this
be achieved? First we need to understand trust management issues in open systems (see
[6] for review of trust related issues).
Trust is a vital component of every business interaction. The Oxford dictionary defines
trust as “Firm belief in the reliability or truth or strength of an entity”. Following [7], we
consider a trust relationship of the form: A trusts B on matters of X at epoch T
Here, A and B may be people, computers and their specific resources and services, or
even small or large organisations that admit to trust relationships. In the proposition, A
is placing a trust relationship (dependence) on B with respect to matters of X. Such
matters constitute the set of rights and obligations of A with respect to B, such that B
permits access to its specific resources (services) to A provided that A fulfils specific
obligations (conditions) laid down by B. Epoch T represents the period during which
both A and B observe the well being of the their trust relationship without incidence of
failure.
In the paper-based world, businesses have been conducted using contracts. The concept
and the use of contracts are not new to today’s society. Legal contracts can be traced
back to ancient times [8].

Trust and Security in Composite Services 2

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

To form and manage VOs, we need to emulate electronic equivalents of the contract
based business management practices; this means that interactions between
organizations will need to be mediated by electronic contracts, and then enforced and
monitored at run time. This aspect is explored in detail in this report.

2. Requirements and Architectural Concepts

2.1. Conversations
Workflow management systems for Web service enactment specify the composition of
a CS as a business process. Such a specification should be sufficiently abstract,
uncluttered with specific details of enactment. Specifying the enactment of the business
process is a concrete operation which requires further information that is critically
dependent on organisational issues. For example, the organisations involved in a CS
may have a peer-to-peer business relationship, in which case, a decentralised enactment
seems a natural choice, with each organisation responsible for its part of the process.
Where as in a hierarchic relationship, a centralised enactment may well be deemed more
appropriate. Fig.1 depicts centralised enactment of CS from organisation 3; here double
arrowed lines indicated message exchanges between organisations. In order to realise
the CS, organisation 3 will need to set up a contract each with organisations 1 and 2
detailing the terms and conditions of service usage (Web services WS1 and WS2
respectively). An alternative arrangement is also possible where there is a single
contract between the three organisation for CS provision.

WS1

CS

WS2

ORG 1

ORG 2

ORG 3

Fig. 1: Inter-organisational interactions

Our main requirement is to ensure that the enactment of a CS generates only those
inter-organisation interactions that are consistent with the contracts in force between
the organisations forming a VO.
We assume that trading partners of a VO explicitly or implicitly agree on the set of
‘message interaction patterns’ or ‘conversations’ associated with a given contract. There
could be several ways of achieving this:
(i) Trading partners agree to use a common standard that has a well defined set of
conversations for business activities. An example of such a standard is Rosettanet [9],
that has defined a number of conversation specifications called partner interface
processes (PIPs). In this case, partners agree on the set of PIPs that they will use within
the VO. The diagram (see fig. 2) shows the business roles, messages, and their sequence
of exchange in a PIP concerned with submission of a purchase order.

Trust and Security in Composite Services 3

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

Buyer Seller

1.PurchaseOrderRequest

2. ReceiptAcknowledgement

3. PurchaseOrderAcceptance

4. ReceiptAcknowledgement

Fig. 2: A sample Rosettanet PIP Interaction

(ii) A variation on (i) above, trading partners jointly compose conversation
specifications in terms of message ordering constraints and rules. The World Wide Web
Consortium, W3C, is developing a standard on Web service choreography, WS-CDL
[10] that defines a language for just such a task.
(iii) Conversation specifications are worked out by careful study of rights and
obligations in contract clauses written in a natural language, and any sequencing
constraints published by the individual services. We briefly describe in a subequent
section (and in detail in [11]) how finite state machine descriptions can be obtained
from contracts.

2.2. Contract mediated conversations
Next we examine how to ensure that enactment of a CS generates interactions that are
consistent with the contracts in force between the organisations.
Each enterprise expects access to other’s services. An operation on a service is allowed
only if it is permitted by the rules of the contract and then only if it is invoked by a
legitimate role player of a participating enterprise. Thus, a contract is a mechanism that
is conceptually located in the middle of the interacting enterprises to intercept all the
contractual operations that the parties try to perform. Intercepted operations are
accepted or rejected in accordance with the contract clauses and role players’
authentication.
We thus need to maintain an explicit representation of a contract. A contract can be
defined as a paper document that stipulates that the signatories (two or more) agree to
observe the clauses stipulated in the document. Each entry in the document is called a
term or a clause. Moreover, it is common practice to specify what role (manager,
accountant, supervisor, etc.) each of the signatories (Alice, Bob, Doug, etc.) play within
their respective enterprises. An e-contract is an electronic version of a conventional
contract. It is an electronic document that stipulates that the signing entities (two or
more) agree to observe clauses stipulated in the document.

A right can be defined as an authorization to do something. Because it is only an
authorization, a right may or may not be exercised. In the context of the execution of an
e-contract, a right is an authorization to perform an operation that will affect the
behaviour of the execution of the e-contract. For example, the e-contract can stipulate
that Alice, as a manager of enterprise E1, has the right to send an offer to sell to Bob,

Trust and Security in Composite Services 4

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

the manager of E2. Because this is a right, it is up to Alice to send or not to send the
offer to Bob; Bob will not be disappointed if he does not receive the offer.

 Similarly, an obligation can be defined as a duty that must be performed. In the context
of the execution of an e-contract, an obligation is a duty to perform an operation that
will affect the behaviour of the execution of the e-contract. A failure to perform such a
duty means a breach of the e-contract. For example, the e-contract might stipulate that
upon receiving an offer to sell from Alice, Bob has the obligation to reply to her with an
OfferAccepted or OfferRejected message.
As an example, consider a simple request-response message exchange as related to a
contract clause. Suppose the contract clause states that “Alice has the right to retrieve a
copy of doc1 from Bob’s enterprise, provided that her request is not submitted on Fri,
Sat or Sun. Bob has the obligation to provide doc1 in less than 24 hrs.” Fig. 3.
illustrates the role of the contract monitor/enforcer that only permits a legitimate
request-reply conversation interaction.
To the contract monitor, we add the additional requirement of supporting non-
repudiated interactions. This is because to regulate the interactions involved, a given
action must be attributable to the party who performed the action and commitments
made must be attributable to the committing party. For example, it should not be
possible for a client to subsequently disavow the request and/or consumption of a
service. That is, to regulate an interaction we require attribution, validation and audit of
the actions of the parties involved. Non-repudiable attribution binds an action to the
party performing the action. Validation determines the legality of an action with respect
to interaction agreements. Audit ensures that evidence is available in case of dispute and
to inform subsequent interactions.

Authenticate and
check

Alice’s ROs

Authenticate and
check

Bob’s ROs

request (doc1)

reply (doc1)

Alice’s Org. Bob’s Org.

Contract Monitor

Fig. 3: Contract monitor

We propose a two level architecture for facilitating contract mediated interactions (see
fig. 4). The lower level provides a mechanism for intercepting messages, generating
non-repudiation logs and upcalling the higher level contract monitoring sub-system that
maintains e-contracts and performs contract specific validation. The message is

Trust and Security in Composite Services 5

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

forwarded to the intended destination only if the validation succeeds. The design of
such an architecture that permits distributed implementation is covered in the following
two sections.

Contract Monitoring and
enforcement

Middleware for mediated
non-repudiable interactions

Fig. 4: Two level architecture for contract monitoring

3. Non-repudiated Interactions
We describe two building blocks for regulated (mediated) interaction between
organisations: non-repudiable service invocation (NR-Invocation) and non-repudiable
information sharing (NR-Sharing). Component middleware support for regulated
service interactions ensures that actions of a member of a VO are non-repudiably bound
to the member; the acceptance, or otherwise, of those actions is non-repudiably bound
to the other members of the VO; and that service invocations, and the results of those
invocations, are bound to the parties to the invocation. The ideas presented have been
dicussed in detail in the TAPAS deliverable [5] and the research paper [12], attached as
an appedix.

3.1 Trusted interceptor abstraction
In this section we introduce the abstraction of trusted interceptors that mediate inter-
organisational interaction and then model non-repudiable service invocation and non-
repudiable information sharing in terms of this abstraction. The trusted interceptor
abstraction is sufficiently general to apply to a variety of interaction scenarios. For
example, it is not bound to any particular non-repudiation protocols but can be seen as a
flexible framework in which protocols can be deployed as appropriate to the regulatory
regime governing an interaction or to the trust relationships between the parties to an
interaction.

interceptor

Org. A Org. B

Org. C

trust
domain

interceptor

interceptor

Figure 5. Trusted interceptors
As shown in Figure 5, each organisation conceptually has a trusted interceptor that acts
on its behalf. The introduction of the trusted interceptors transforms an unregulated
domain into a trust domain that safeguards the interests of each party. The interaction

Trust and Security in Composite Services 6

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

between interceptors is regulated, audited and fair [13]. That is, trusted interceptors
provide a trust domain by policing access to the domain and regulating and auditing
actions within the domain. The fairness guarantee is that honest parties will not be
disadvantaged by the behaviour of dishonest parties. In the worst case, a break down in
an interaction will lead to dispute. To support dispute resolution, the fact that trusted
interceptors mediated the interaction will provide any honest party with irrefutable
evidence of their own actions within the domain and of the observed actions of other
parties. The trusted interceptor abstraction insulates the parties to the interaction from
the detail of underlying mechanisms used to meet regulatory requirements. Interceptors
can implement different mechanisms to meet different interaction requirements and can
be reconfigured to meet changing requirements as inter-organisational relationships
evolve.

3.1.1 Non-repudiable service invocation (NR-Invocation)
Figure 6(a) shows a typical two-party, client-server interaction. The client invokes a
service by sending a request to the server who issues a response. Non-repudiable service
invocation provides the following assurances to the client:
1. that following an attempt to submit a request to a server, either: (a) the
submission failed and the server did not receive the request; or (b) the submission
succeeded and there is proof that the request is available to the server; and:
2. that if a response is received, there is proof that the server produced the
response.

(b) Non-repudiable service invocation

req, NROreq

resp, NROresp

NRRresp

req

resp

req
resp

NRRreq

interceptor interceptor

Client Server

(a) Service invocation

request

responseClient Server

Figure 6. NR-Invocation through trusted interceptors

For the server, the corresponding assurances are:

1. that if a request is received, there is proof identifying the client who submitted
the request; and:

2. that following an attempt to deliver a response to the client, either: (a) the
delivery failed and the client did not receive the response; or (b) delivery
succeeded and there is proof that the response is available to the client.

To provide the above assurances, trusted interceptors execute a non-repudiation
protocol that ensures the following:

1. a request is passed to a server if, and only if, the client (or its interceptor)
provides non-repudiation evidence of the origin of the request (NROreq) and the

Trust and Security in Composite Services 7

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

server (or its interceptor) provides non-repudiation evidence of receipt of the
request (NRRreq)

2. the response is passed to the client if, and only if, the server (or its interceptor)
provides non-repudiation evidence of the origin of the result (NROresp) and the
client (or its interceptor) provides non-repudiation evidence of receipt of the
response (NRRresp).

Non-repudiation tokens include a unique request identifier, to distinguish between
protocol runs and to bind protocol steps to a run, and a signature on a secure hash of the
evidence generated. Figure 6(b) models the exchange of evidence achieved by the
execution of an appropriate non-repudiation protocol between interceptors acting on
behalf of client and server. The client initiates a request for some service. The client's
interceptor generates an NROreq token and then sends both the request and the token to
the server's interceptor. The server's interceptor generates an NRRreq token and returns
it to the client's interceptor. The server's interceptor then passes the request to the server
to generate a response. On receipt of the response, the server's interceptor generates an
NROresp token and sends both the response and the token to the client's interceptor.
The interceptors ensure that irrefutable evidence of the exchange is both generated and
stored.

3.1.2 Non-repudiable information sharing (NR-Sharing)

(a) Information sharing

Org. C

Org. B

Org.
A i

update

update

update

(b) Non-repudiable information sharing

2

Org.
A i1 3

interceptor

Org. B

interceptor

Org. C

interceptor
2

Figure 7. NR-Sharing through trusted interceptors
Figure 7(a) shows three organisations (A, B and C) accessing and updating shared
information. If, for example, A wishes to update the information, then they must reach
agreement with B and C on the validity of the proposed update. For the agreement to be
non-repudiable: (i) B and C require evidence that the update originated at A; and (ii) A,
B and C require evidence that, after reaching a decision on the update, all parties have a
consistent view of the agreed state of the shared information. The latter condition
implies that there must be evidence that all parties received the update and all parties
know whether there was unanimous agreement to it being applied to the information.
Figure 7(b) shows A proposing an update to the information shared by A, B and C.
Interceptors are used to mediate each organisation's access to the information. In step 1,
A attempts an update to the information. A's interceptor intercepts the update and, in
step 2, executes a non-repudiable state coordination protocol with B and C to achieve
the following:

1. That A's update is irrefutably attributable to A and proposed to B and C.

Trust and Security in Composite Services 8

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

2. That B and C independently validate A's proposed update, using a locally
determined and application-specific process, and their respective decisions are
made available to A and are irrefutably attributable to B and C.

3. That the collective decision on the validity of the update (in this case, responses
from B and C to A) are made available to all parties (A, B and C).

If the resolution of the protocol executed at step 2 represents agreement to the update
then the shared information is updated in step 3. Otherwise, the information remains in
the state prior to A's proposed update. Non-repudiable connect and disconnect protocols
govern changes to the membership of the group of organisations sharing the information
The use of interceptor's allows us to abstract away the details of state coordination and
insulate the application from protocol specifics. From the application viewpoint, the
update to shared information is an atomic action that succeeds or fails dependent on the
agreement of the parties sharing the information. Thus the interceptors may execute any
protocol that achieves non-repudiable agreement on: the origin and state of a proposed
update; the state of the shared information after application of an update; and the
membership of the group that agreed to, or vetoed, the update.

4. Contract Monitoring and Enforcement
We use finite state machines (FSMs) for representing conversations. We describe how
to map the rights and obligations extracted from the clauses of the contract into the
states, transition and output functions, and input and output symbols of a FSM.
At the level of rights and obligations a contract is often more easily understood as a set
of FSMs, one for each contracting party. So, from our example in Fig.3, we will have
one FSM for the purchaser (Alice) and one FSM for the supplier (Bob). The physical
location of each FSM is irrelevant to the functionality of the contract and is decided at
the time of implementation, influenced by the way interceptor have been deployed. We
will now discuss how the rights and obligations stipulated in an e-contract can be
mapped into the FSMs.
It is easy to reason about the operations of an e-contract, with the following general
syntax in mind:

if event1 & conditionq
perform operation1 and switch to state1
else if event2 & conditionq
perform operation2 and switch to state2
… … …
else if eventm & conditionq
perform operationm and switch to statem

This syntax expresses the idea that, at some point an e-contract can be at any of n
possible conditions (condition1, condition2,…,conditionn). If the e-contract is in a given
conditionq (for example, WatingForOffer), there is a finite and well defined set of
events (event1, event2 , …,eventm) that can affect the future behaviour of the contract.
The occurrence of eventi determines what objects (variables, files, database, etc.) within
the system change their values, that is, the event determines to which new condition the
systems switches. Similarly, there is a finite and well defined set of operations
(operation1 , operation2 ,…, operationm) that can be executed when the system is in
conditionq. The eventi determines the operation to be executed.

Trust and Security in Composite Services 9

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

Thus, in terms of FSMs, we can express the above syntax as shown in Fig.8, where e
and o stand for event and operation, respectively.

state1

stateq state2

statem

e 1/o
1

e2/o2

e
m /o

m

…

state1

stateq state2

statem

e 1/o
1

e2/o2

e
m /o

m

…

Fig. 8. FSM representation

To show what rights and obligations look like, we will discuss a very simple contract
for offering and purchasing goods. As an attentive reader will notice, the contract has
some ambiguities that could lead to deadlocks (The contract text does not specify the
time for sending the offer. Neither does it specify the time for sending the notification
about rejecting or accepting the offer). However, here we will ignore these. In practice,
such ambiguities will have to be removed, for example, using the process of model
checking, as discussed in [14].

1. Offering
1.1 The supplier may use his discretion to send offers to the purchaser.
1.2 The purchaser is entitled to accept or reject the offer, but he shall notify his decision

to the supplier.
2. Commencement and completion
2.1 The contract shall start immediately upon signature.
2.2 The purchaser and the supplier shall terminate the e-contract immediately after

reaching a deal for buying an item.

From this English text contract clause we can extract the sets of rights and obligations
for the purchaser and the supplier and express them in terms of operations for FSMs.

Purchaser’s rights:

PR1 : SendAccepted -- right to accept offers.
PR2 : SendRejected -- right to reject offers.

Purchaser’s obligations:

PO1 : StartEcontract -- obligation to start the e-contract.
PO2 : SendAccepted or SendRejected -- obligation to reply to offers.
PO3 : EndEcontract -- obligation to terminate the e-contract.

Supplier’s rights:

sR1 : SendOffer -- right to send offers.

Trust and Security in Composite Services 10

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

Trust and Security in Composite Services 11

Supplier’s obligations:

SO1 : StartEcontract -- obligation to start the e-contract.
SO2 : EndEcontract -- obligation to terminate the e-contract.

As shown in Fig.9, we have used two FSMs to describe the conversation implied by the
English text contract of our example.
With appropriate support from the underlying middleware (see below), each FSM can
be used to monitor and enforce the rights and obligations of its owner. Thus the
supplier’s FSM will allow the supplier to execute only the operations he has the right to
execute and nothing else. Likewise, the FSM enforces the supplier to execute the
operations he has the obligation to execute. The purchaser’s FSM works in a similar
way. The FSM based contract representation can be further enriched with access control
mechanisms, e.g, role based access control, as dicussed in [4].

Fig. 9. FSM Representation.

With this background, we can hint at the overall implementation of a distributed
contract monitoring system. The implementation of that involves a purchaser and a
supplier is shown in Fig.8. Each party maintains a copy of the contract object, encoded
as one or more shared objects that support non-repudiable information sharing; in the
diagram they are referred to as B2Bobj; operations on these objects are controlled by
the contract FSMs. The dashed line that goes from the supplier to the purchaser shows
what happens when the supplier sends an offer. When the offer is ready, the supplier
invokes a send operation, and the supplier's FSM switches to its Waiting for response
state and makes a SendOffer call to the local copy of a shared B2Bobj (that implements
the operation). The local B2Bobj collects, and signs, evidence of the operation and
requests coordination of the proposed update to its state with the purchaser's B2Bobj.
The purchaser's B2Bobj verifies the evidence provided and makes an up-call to the
purchaser's FSM to validate the B2Bobj operation. Upon receiving the up-call, the
purchaser's FSM switches to the Deciding to buy state.

The dashed line from the purchaser's FSM to the supplier's FSM shows how the
purchaser's response is transmitted to the supplier. The middleware ensures that all
operations performed by the purchaser and the supplier are recorded and are non-
repudiable.

OfferRcvd
 ε

 OfferAccepted
PO2 SendAccepted, PO3

EndEcontract

OfferEdited
 sR1

SendOffer

OfferAcceptedRcvd

 SO2 EndEcontract

Purchaser Supplier

 OfferRejected
 PO2

 SendRejected OfferRejectedRcvd
 ε

Wating
for offer

Waiting
for results

 E-contractSigned
SO1
 StartEcontract

 EcontractSigned
PO1

StartEcontract

Editing
 offer

Deal

Deciding
to buy

Deal

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

Trust and Security in Composite Services 12

Preparing
offer

Waiting for
response

OfferReady
SendOffer

EcontractSigned
ε

Waiting for
payment

Purchaser Supplier

Purchaser’s copy
of B2Bobj

Supplier’s copy
of B2Bobj

B2Bobj

AcceptedRcvd
ε

RejectedRcvd
ε

Waiting for
offer

Deciding to
accept

EcontractSigned
ε

Preparing
payment

OfferRcvd
ε

OfferRejected
SendRejected

OfferAccepted
SendAccepted

Preparing
offer

Waiting for
response

OfferReady
SendOffer

EcontractSigned
ε

Waiting for
payment

Purchaser Supplier

Purchaser’s copy
of B2Bobj

Supplier’s copy
of B2Bobj

B2Bobj

AcceptedRcvd
ε

RejectedRcvd
ε

Waiting for
offer

Deciding to
accept

EcontractSigned
ε

Preparing
payment

OfferRcvd
ε

OfferRejected
SendRejected

OfferAccepted
SendAccepted

Fig. 14. Implementing contract monitoring

5. Concluding Remarks
A central problem in VO management is therefore how organisations can regulate
access to their resources by other organisations in a way that ensures that their
individual policies for information sharing are honoured. We have desribed how
contracts can be used to regulate inter-organisation interactions. A contract is
conceptually located in the middle of the interacting enterprises to intercept all the
contractual operations that the parties try to perform. Intercepted operations are
accepted or rejected in accordance with the contract clauses and role players’
authentication. We have described a two level architecture that permits distributed
implementation. Design details of the architecture were presented.

References
[1] ADAPT deliverable report D9: CS Middleware Architecture, September 2003,
http://adapt.ls.fi.upm.es/adapt.htm
[2] ADAPT deliverable report D6: Service Specification Language, September 2003,
http://adapt.ls.fi.upm.es/adapt.htm
[3] ADAPT deliverable report D7: Composition Language, September 2003,
http://adapt.ls.fi.upm.es/adapt.htm
[4] TAPAS deliverable report D5: TAPAS Architecture: concepts and protocols, March
2003, http://www.newcastle.research.ec.org/tapas/
[5] TAPAS deliverable report D9: Component Middleware for Trusted Coordination,
March 2004, http://www.newcastle.research.ec.org/tapas/
[6] T. Grandison and M. Sloman, “A survey of trust in Internet applications”, IEEE
Communications Surveys, Fourth Quarter 2000, HTUwww.comsoc.org/pubs/surveysUTH.

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

[7] E. Gerck, Towards Real-World Models of Trust: Reliance on Received Information,
published on 23rd June 1998 in the mcg-talk list server.
[8] Paul Halsall, "Ancient History Sourcebook: A Collection of Contracts from
Mesopotamia, c. 2300--428 BCE",
http://www.fordham.edu/halsall/ancient/mesopotamia-contracts.html, March, 1999.
[9] Rosettanet implementation framework: core specification, V2, Jan 2000.
http://rosettanet.org
[10] Web service choreography Description Language, Version 1.0,
http://www.w3.org/TR/ws-cdl-10/
[11] C. Molina-Jimenez, S.K. Shrivastava, E. Solaiman and J. Warne, “Run-time
Monitoring and Enforcement of Electronic Contracts”, Electronic Commerce Research
and Applications (ECRA), Elsevier, Vol.3, No.2, 2004, pp. 108-125.
[12] Nick Cook, Paul Robinson and Santosh Shrivastava, “Component Middleware to
Support Non-repudiable Service Interactions”, IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN 2004), Florence, June 2004, pp. 605-614.
[13] Kremer, S., Markowitch, O. and Zhou, J., “An Intensive Survey of Fair Non-
repudiation Protocols.” Computer Communications, 25:1601-1621, Elsevier, 2002.
[14] Ellis Solaiman, Carlos Molina-Jimenez, and Santosh Shrivastava, “Model
Checking Correctness Properties of Electronic Contracts”, International Conference on
Service Oriented Computing 2003, M.E. Orlowska et al. (Eds.), ICSOC 2003, LNCS
2910, pp. 303-318, 2003. ISBN 3 540 20681 7.

Trust and Security in Composite Services 13

http://rosettanet.org/

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

Appendix: Component Middleware to Support Non-repudiable
Service Interactions1

Nick Cook
Paul Robinson

Santosh Shrivastava

School of Computing Science
University of Newcastle upon Tyne

Abstract. The wide variety of services and resources available over the
Internet presents new opportunities to create value added, inter-
organisational Composite Services (CSs) from multiple existing services.
The resulting CS may involve close interaction between the constituent
services of participating organisations. In order to preserve their
autonomy and privacy, each organisation needs to regulate access both to
their services and to shared information within the CS. Key mechanisms
to facilitate such regulated interactions are the collection and verification
of non-repudiable evidence of the actions of the parties to the CS. The
paper describes how component based middleware can be enhanced to
support non-repudiable service invocation and information sharing.
These mechanisms can be incorporated in the service delivery platforms
at each organisation or at one or more trusted third parties who offer non-
repudiation services, or some combination of these options. A generic
implementation, based on a J2EE application server, is presented.

Keywords: System Security; FT Architecture/Middleware Software
Engineering; Non-repudiation; Service Composition

1. Introduction
The wide variety of services and resources available over the Internet presents new
opportunities to create value-added, inter-organisational Composite Services (CSs) from
multiple existing services. The resulting CS may involve close interaction between the
constituent services of participating organisations. However, while cooperating to form
a CS, each organisation needs to maintain their autonomy and privacy. This implies the
regulation of access both to the services offered within a CS and to information that is
shared in a CS. Regulation of access to shared information includes validation by all
interested parties of any proposed changes to that information. Since the intention is to
compose a CS from existing services, regulatory requirements should be met by the
extension, as opposed to replacement, of existing services. The main contribution of this
paper is to address this requirement by extending component based middleware to
provide a flexible framework to support regulated interaction between organisations.

1 Extended version of the paper presented at the IEEE/IFIP Int. Conf. on Dependable Syst. and
Networks, Florence, Italy, 2004.

Trust and Security in Composite Services 14

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

It is assumed that each organisation has a local set of policies for an interaction that is
consistent with an overall agreement (or set of agreements) between organisations (the
business contract). The formation and operation of the CS must not compromise local
policies and must comply with the business contract. There are two aspects to regulation
in this context:

1 high level mechanisms to specify and enforce contractual rights and obligations
(examples include work on Law Governed Interaction [15] and on contract
representation and monitoring [16]); and

2 lower level mechanisms to generate a non-repudiable audit trail that can be used
to record and to verify that observed interaction behaviour adheres to
agreements.

An interaction is non-repudiable if it is impossible for any party to the interaction to
subsequently deny their participation. This paper presents two mechanisms that together
form the basic building blocks for trusted interaction: non-repudiable service invocation
and non-repudiable information sharing. These provide abstractions that are familiar
from the intra-organisational context and result in regulated interaction in the inter-
organisational context. For example, non-repudiable service invocation can be used to
audit requests between organisations to access or modify each other's internal
information, or for transfer of control over shared information. Non-repudiable
information sharing regulates access to and updates of shared information.
The contributions of this paper are that it: (i) introduces the abstraction of trusted
interceptors that mediate the interaction between organisations to achieve the exchange
of non-repudiation evidence and to validate changes to shared information; (ii) shows
that this abstraction is sufficiently general to apply to a variety of interaction scenarios;
and (iii) demonstrates the practicality of the abstraction through a prototype
implementation in component based middleware (such as J2EE [21]). Section 2
provides a motivating example. Section 3 discusses the trusted interceptor abstraction
and our model of non-repudiable interaction. Section 4 describes the prototype
component-based implementation of non-repudiation services. Related work is
discussed in Section 5. Section 6 concludes the paper with an overview of future work.

2. Motivating example
This section describes the scenario of a specialist car manufacturer that combines
components from various part suppliers to satisfy the requirements of a specialist car
dealer (acting on behalf of the ultimate customer).

 shared space

 organisationNR-Invocation

NR-Sharing

local database

shared information

Virtual
Enterprise

Specialist car
 manufacturer

Part supplier B

Part supplier A

Part supplier C

Car dealer

Figure 1. Specialist car manufacturer application
Figure 1 presents the overall structure of the interaction between the specialist car
dealer, the car manufacturer and, in this example, three car part suppliers. In effect these

Trust and Security in Composite Services 15

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

enterprises collaborate to form a virtual enterprise (VE) to deliver a specialist car to the
car dealer's customer. That is, the VE creates a Composite Service (CS) for the
specification and delivery of a specialist car. The CS interactions must be regulated to
ensure that each member of the VE obtains the value they expect from the collaboration
and are bound to the corresponding commitments they make.
CS interactions involve invocation of services between members of the VE and the
sharing of information that is held in common by the VE. For example, Figure 1 depicts
the car manufacturer and suppliers A and B negotiating the delivery of some
component. The component is required to meet an overall specification negotiated
between the dealer and the manufacturer. The manufacturer is then required to reach
agreement with the suppliers on details such as: interfaces between parts, cost of
customisation and delivery schedules. It is natural to share this information so that each
party can update it (subject to the agreement of the other parties). Other artifacts that are
shared, and may be subject to renegotiation, are the agreements governing the
interaction. In addition to update to shared information, the process of reaching
agreement on the specification of a car component, and the car as a whole, will involve
requests between parties that some action is performed. Actions may range from the
resolution of queries on the range of parts available to requests to act on shared
information (initiating a transfer of control). These requests are naturally expressed as
service invocations.
To regulate interactions of the above type, a given action must be attributable to the
party who performed the action and commitments made must be attributable to the
committing party. For example, it should not be possible for a client to subsequently
disavow the request and consumption of a service. Similarly, it should not be possible
for the service provider to subsequently deny having delivered a service. If information
is shared then the parties sharing the information should be able to validate a proposed
update, the update should be attributable to its proposer and the validation decisions
with respect to the update attributable to the other parties. That is, to regulate an
interaction we require attribution, validation and audit. Non-repudiable attribution binds
an action to the party performing the action. Validation determines the legality of an
action with respect to interaction agreements. Audit ensures that evidence is available in
case of dispute and to inform future interactions. This paper addresses these
requirements by providing two building blocks for regulated interaction between
organisations: non-repudiable service invocation (NR-Invocation) and non-repudiable
information sharing (NR-Sharing). Component middleware support for regulated
service interactions ensures that actions of a member of a VE are non-repudiably bound
to the member; the acceptance, or otherwise, of those actions is non-repudiably bound
to the other members of the VE; and that service invocations, and the results of those
invocations, are bound to the parties to the invocation.

3. Building blocks for trusted interaction
This section discusses the abstraction of trusted interceptors that mediate inter-
organisational interaction and describes our model of non-repudiable interaction in
terms of this abstraction. We argue that the trusted interceptor abstraction is sufficiently
general to apply to a variety of interaction scenarios. For example, it is not bound to
particular non-repudiation protocols but can be seen as a flexible framework in which
protocols can be deployed as appropriate to the regulatory regime governing an
interaction or to the trust relationships between the parties to an interaction.

Trust and Security in Composite Services 16

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

3.1 Trusted interceptors and trust domains
Inter-organisational interaction requires regulatory mechanisms to ensure: (i) that
misbehaviour by dishonest parties does not disadvantage honest parties and (ii) that
honest parties share a verifiable, consistent view of the nature of the interaction.
However, different types of interaction will demand different mechanisms. The choice
of mechanisms to deploy will be determined by application-specific factors such as: the
relationship between the parties to the interaction, the legal framework and agreements
that govern the interaction, and the application domain within which the organisations
operate. The common feature of all regulatory mechanisms is that they somehow
mediate the interaction between parties. The trusted interceptor abstraction generalises
this notion of mediation. As shown in Figure 2, conceptually, each party has a trusted
interceptor that acts on its behalf. The introduction of trusted interceptors transforms an
unregulated domain into a trust domain for the conduct of regulated, audited and fair
interaction. Informally, a fair interaction is one in which honest parties cannot be
disadvantaged by the behaviour of dishonest parties (for details, see Markowitch et al
[14] who discuss the evolution of the notion of fairness in exchange protocols). The
trusted interceptor abstraction insulates the parties to the interaction from the detail of
underlying mechanisms used to meet regulatory requirements. Interceptors can
implement different mechanisms to meet different interaction requirements and can be
reconfigured to meet changing requirements as relationships evolve.

interceptor

Org. A Org. B

Org. C

trust
domain

interceptor

interceptor

Figure 2. Trusted interceptors
Trusted interceptors provide a trust domain by policing access to the domain and
regulating and auditing actions within the domain. To support dispute resolution, the
fact that trusted interceptors mediated the interaction will provide any honest party with
irrefutable evidence of their own actions within the domain and of the observed actions
of other parties. The regulatory mechanisms used to support a trust domain will vary
according to the degree of trust between parties. For example, a more lightweight
mechanism can be used when parties, who otherwise trust each other, need a verifiable
audit trail of their interaction compared to the situation where parties are mutually
mistrusting (and require strong fairness guarantees). Also, certain types of interaction
may be inherently more trustworthy than others. For example, there may be stronger
incentives to good behaviour in a long-running interaction involving update to shared
information between members of a VE compared with a one-off service invocation.
This observation is supported by work on the Iterative Prisoner's Dilemma [1] where the
prospect of and payoff from future interaction can even induce antagonists to cooperate.
Ultimately, trusted interceptors construct a trust domain that, under assumptions agreed
between the parties to an interaction, delivers safety and liveness guarantees. Safety
guarantees ensure that the interaction complies with agreements between organisations
— for example, that changes to shared information are unanimously agreed. Liveness

Trust and Security in Composite Services 17

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

guarantees address forward progress — for example, that honest parties can resolve an
exchange despite non-cooperation of dishonest parties.

(c) direct trust domain

Org. BOrg. A
trust

domain

interceptor interceptor

(a) inline TTP trust domain

TTP

Org. BOrg. A trust
domain

(b) distributed inline TTP trust domain

Org. A Org. B
TTP

A
TTP

Btrust
domain

Figure 3. Trust domains using trusted interceptors
Figure 3 shows three approaches to the use of trusted interceptors to provide a trust
domain (for simplicity, between two organisations). In both Figure 3(a) and 3(b),
communication between organisations A and B is routed via Trusted Third Parties
(TTP(s)). Figure 3(a) shows a single TTP acting on behalf of both organisations. Figure
3(b) is the construction of an inline TTP from TTPs acting on behalf of A and B.
However constructed, the inline TTP is an interceptor between the organisations and is
responsible for ensuring that agreed safety and liveness guarantees are delivered to
honest parties.
The alternative to interaction through inline TTPs is the formation of a direct trust
domain by the organisations themselves. As shown in Figure 3(c), in this case, each
party to the interaction hosts its trusted interceptor. The interceptors execute protocols
that deliver the guarantees required to form a trust domain appropriate to the given
interaction. Depending on the relationship between organisations and the specific
interaction requirements, this direct trust domain may demand the availability of one or
more TTPs. These TTP(s) are not directly involved in all communication between the
parties but may be called upon to resolve or abort a protocol run to deliver fairness
and/or liveness guarantees to honest parties. The organisations forming a trust domain
can agree on the deployment of different interceptors to deliver different fairness or
reliability guarantees or to satisfy different evidentiary requirements. An advantage of
the formation of a direct trust domain is that it is easier to make trade-offs between
different requirements. For example, the implementation of non-repudiable information
sharing described in Section 4.3 involves direct interaction between organisations
without the support of a TTP. Nevertheless, as shown in [5], it has the safety property
that an honest party can irrefutably assert the validity of the (agreed) state of shared
information despite failure and/or misbehaviour by other parties. It has the liveness
property that if no party misbehaves, agreed interactions take place despite a bounded
number of temporary network and computer related failures. In effect, the risk of a loss
of liveness and the resultant breakdown of an interaction leading to dispute is traded
against the advantage of direct interaction between parties without the involvement of a
TTP. An alternative implementation, using different interceptors, could involve a TTP
to deliver a stronger liveness guarantee.

Trust and Security in Composite Services 18

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

The above models for implementation of a trust domain are not mutually exclusive. One
part of an interaction may deploy interceptors at trusted third parties while another uses
interceptors hosted within each organisation. As an interaction evolves it may be
appropriate to change the deployment of interceptors.
In the remainder of this section we describe how trusted interceptors are used to achieve
regulated service invocation and information sharing. First, we enumerate the trusted
interceptor assumptions (some of which are trivially met when a single TTP acts as
interceptor for all parties):

1. Trusted interceptors use perfect cryptography. For example, signatures cannot be
forged and encrypted data cannot be decrypted except with the appropriate
decryption key.

2. The communication channel between trusted interceptors provides eventual
message delivery (there is a bounded number of temporary network and
computer related failures).

3. Trusted interceptors have persistent storage for messages (or, more precisely,
evidence extracted from messages). The minimum requirement is that
interceptors ensure evidence is available for as long as is necessary to meet their
obligations to the other interceptors mediating an interaction. Longer term
storage to protect the interests of the party on whose behalf an interceptor acts
will be determined by agreement between the party and its interceptor.

4. Trusted interceptors only exchange messages that are well constructed with
respect to the interaction they are mediating. For example: interceptors do not
relay information provided by the organisation they represent that is invalid with
respect to a given protocol execution; and messages exchanged are either
tamper-resistant (encrypted), or tampering is detectable and interceptors will
cooperate to ensure a well-constructed message is eventually delivered.

5. Trusted interceptors execute on reliable nodes or the interaction between them is
made fault tolerant by employing mechanisms such as those described by
Ezhilchelvan and Shrivastava [7].

Given these assumptions, trusted interceptors can cooperate to ensure fairness and
liveness for honest parties to an interaction. Ultimately, since cooperation of dishonest
parties cannot be enforced, the guarantee is that trusted interceptors will support the
conclusion of dispute resolution in favour of honest parties. The infrastructure
requirements implied by the above assumptions are discussed in Section 3.5.
The following descriptions of non-repudiation services apply to all three approaches to
constructing a trust domain. In the case of a single inline TTP, trusted interceptors
acting on behalf of each party are co-located and communication between them is
internal to the TTP. In practice, this may mean that the interceptors are constructed from
components hosted by the same application server and interfaces to interact through the
interceptors are presented to participating organisations.

Trust and Security in Composite Services 19

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

3.2 Non-repudiable service invocation

(b) Non-repudiable service invocation

req, NROreq

resp, NROresp

NRRresp

req

resp

req
resp

NRRreq

interceptor interceptor

Client Server

(a) Service invocation

request

responseClient Server

Figure 4. Non-repudiable service invocation
Figure 4(a) shows a typical two-party, client-server interaction. The client invokes a
service by sending a request to the server who issues a response. We assume at-most-
once service invocation semantics (supported by most middleware): if the client
receives the response then this means that the invoked operation has been executed
once; if no response is received then the operation may or may not have been executed.
Non-repudiable service invocation provides the following additional assurances to the
client: (1) that following an attempt to submit a request to a server, either: (a) the
submission failed and the server did not receive the request; or (b) the submission
succeeded and there is proof that the request is available to the server; and: (2) that if a
response is received, there is proof that the server produced the response. For the server,
the corresponding assurances are: (1) that if a request is received, there is proof
identifying the client who submitted the request; and: (2) that following an attempt to
deliver a response to the client, either: (a) the delivery failed and the client did not
receive the response; or (b) delivery succeeded and there is proof that the response is
available to the client.
To provide the above assurances, trusted interceptors execute a non-repudiation
protocol that ensures the following:

1. a request is passed to a server if, and only if, the client (or its interceptor)
provides non-repudiation evidence of the origin of the request (NROreq) and the
server (or its interceptor) provides non-repudiation evidence of receipt of the
request (NRRreq)

2. the response is passed to the client if, and only if, the server (or its interceptor)
provides non-repudiation evidence of the origin of the result (NROresp) and the
client (or its interceptor) provides non-repudiation evidence of receipt of the
response (NRRresp).

Non-repudiation tokens include a unique request identifier, to distinguish between
protocol runs and to bind protocol steps to a run, and a signature on a secure hash of the
evidence generated. Figure 4(b) models the exchange of evidence achieved by the
execution of an appropriate non-repudiation protocol between interceptors acting on
behalf of client and server. The client initiates a request for some service. The client's
interceptor generates an NROreq token and then sends both the request and the token to
the server's interceptor. The server's interceptor generates an NRRreq token and returns
it to the client's interceptor. The server's interceptor then passes the request to the server
to generate a response. On receipt of the response, the server's interceptor generates an

Trust and Security in Composite Services 20

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

Trust and Security in Composite Services 21

NROresp token and sends both the response and the token to the client's interceptor. As
noted in Section 3.1, the interceptors are responsible for verification and persistence of
evidence generated during the exchange. The exact meaning of generation of non-
repudiation evidence will be dependent on the actual protocol used to execute the
exchange. Client and server may sign evidence, or their interceptors may sign on their
behalf, or, as with some fair exchange protocols, a combination of client/server signing
in the normal case and TTP signing in case of recovery will be used. Minimally, the
interceptors ensure that irrefutable evidence of the exchange is generated.
Assuming the server-side response (resp) includes evidence as to whether the request
was made available to the server, the above model of the interaction between client
interceptor and server interceptor can be simplified to:

client interceptor → server interceptor : req, NROreq
server interceptor → client interceptor : resp, NRRreq, NROreq
client interceptor → server interceptor : NRRresp

If the request was made available to the server, then resp is either the result of normal
execution of the request at the server or interceptor-generated evidence that the request
failed or that the server did not respond within some agreed timeout or that the client
initiated an abort of the request before a result was available. If the request was not
made available to the server, then resp indicates that the request was received but not
executed. Similarly, the client-side receipt for the server-side response, NRRresp, may
include evidence as to the client's consumption of the response. For example, if the
interceptor can prevent access to the result of the server's execution of the client's
request, then the NRRresp can indicate that the response was received but not consumed
by the client. This equates to at-most-once semantics where a server may do work on
behalf of a client that is not consumed. Given these semantics, the client may fail or
timeout and the server will receive evidence that a result was generated that the client
did not consume.

3.3 Non-repudiable information sharing

(a) Information sharing

Org. C

Org. B

Org.
A i

update

update

update

(b) Non-repudiable information sharing

2

Org.
A i1 3

interceptor

Org. B

interceptor

Org. C

interceptor
2

Figure 5. Non-repudiable information sharing
Figure 5(a) shows three organisations (A, B and C) accessing and updating shared
information. If, for example, A wishes to update the information, then they must reach
agreement with B and C on the validity of the proposed update. For the agreement to be
non-repudiable: (i) B and C require evidence that the update originated at A; and (ii) A,
B and C require evidence that, after reaching a decision on the update, all parties have a
consistent view of the agreed state of the shared information. The latter condition

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

implies that there must be evidence that all parties received the update and all parties
know whether there was unanimous agreement to it being applied to the information.
Figure 5(b) shows A proposing an update to the information shared by A, B and C.
Interceptors are used to mediate each organisation's access to the information. In step 1,
A attempts an update to the information. A's interceptor intercepts the update and, in
step 2, executes a non-repudiable state coordination protocol with B and C to achieve
the following:

1. That A's update is irrefutably attributable to A and proposed to B and C.

2. That B and C independently validate A's proposed update, using a locally
determined and application-specific process, and their respective decisions are
made available to A and are irrefutably attributable to B and C.

3. That the collective decision on the validity of the update (in this case, responses
from B and C to A) are made available to all parties (A, B and C).

If the resolution of the protocol executed at step 2 represents agreement to the update
then the shared information is updated in step 3. Otherwise, the information remains in
the state prior to A's proposed update. Non-repudiable connect and disconnect protocols
govern changes to the membership of the group of organisations sharing the
information.
Our previous work on B2BObjects [5] presents a realisation of the above abstraction of
regulated information sharing. The paper gives a detailed description of a non-
repudiable state coordination protocol used to reach agreement on update to shared
information that offers the liveness and safety guarantees discussed in Section 3.1 A
Java RMI-based implementation of B2BObjects is also described. This implementation
is the starting point for the component middleware support for regulated information
sharing described in Section 4.3.
As with non-repudiable service invocation, the use of interceptor's allows us to abstract
away the details of state coordination and insulate the application from protocol
specifics. From the application viewpoint, the update to shared information is an atomic
action that succeeds or fails dependent on the agreement of the parties sharing the
information. Thus the interceptors may execute any protocol that achieves non-
repudiable agreement on: the origin and state of a proposed update; the state of the
shared information after application of an update; and the membership of the group that
agreed to, or vetoed, the update.

3.4 Evidence generation requirements
To meet non-repudiation requirements the evidence generated, and signed, during
service invocation or update to shared information must be in a form that cannot be
subsequently disputed. For non-repudiable service invocation, the requirement is that a
meaningful snapshot of the invocation is signed and stored. An invocation has two
parts: (i) the request comprising the service invoked, identified by a globally resolvable
name such as a Uniform Resource Identifier (URI), and any parameters to the request,
and (ii) the result of the invocation. For both the parameters to the invocation and the
result, there are three different types to consider.

1. value types, or references to local objects, must be resolved to an agreed
representation of their state at invocation (or at response for the result).

Trust and Security in Composite Services 22

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

Trust and Security in Composite Services 23

2. service references must be resolved to a meaningful, agreed representation of
the service such as a URI.

3. shared information must be resolved both to a representation of the state of the
information and a reference to the mechanism for sharing the information that is
resolvable by the remote party. The combination of this evidence allows the
remote party to determine the state of the shared information at invocation time
and also to access the shared information locally after the invocation has
completed.

For non-repudiable information sharing, the main requirements are: (i) that an agreed
representation of information state is stored; and (ii) that there can be no dispute that a
subsequent reconstruction of information state is a state previously agreed by the
organisations who share the information.

3.5 Infrastructure requirements
Trusted interceptors require the following underlying services:

• Cryptographic primitives [20]: a signature scheme such that signature sigBAB(x) by A
on data x is both verifiable and unforgeable; a secure (one-way and collision-
resistant) hash function; and a secure pseudo-random sequence generator to
generate statistically random and unpredictable sequences of bits. Random
numbers are used to generate unique identifiers and random authenticators during
non-repudiation protocols.

• Credential (certificate) management: a service to support signature verification
that stores certificates and certificate revocation information, and can be used to
verify certificate chains.

• Time-stamping: non-repudiation evidence should be time-stamped for logging and
to support the assertion that the signature used to sign evidence was not
compromised at time of use [26]. Recently, forward-secure signature schemes
have been proposed that obviate the need for a third party signature on time-
stamps [25].

• Persistence: persistence services are required both to log non-repudiation evidence
and to store the state of invocation parameters/results and of shared information.
Non-repudiation evidence will include a signed secure digest of state that is held
in a state store. Persistence services should support the mapping of the state digest
to the representation of state in the state store.

• Access control: to map credentials to roles between organisations. The exchange
of credentials at first connection to shared information or on service invocation
can be used as hooks to trigger the mapping of credentials to roles in a virtual
enterprise. In this area, there is considerable existing work on credential exchange
[11, 24]. An approach that seems fruitful is Cambridge's event-based access
control system [2] where roles are activated, based on credentials presented, and
de-activated in response to events in the system or changes in the environment.

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

Trust and Security in Composite Services 24

• Membership service: for information sharing, the membership of the group that
shares information must be identified. It must also be possible to map member
identifiers (for example, URIs) to credentials in the credential management
service.

4. Component-based implementation
This section presents a component middleware implementation of the services described
in Section 3. The implementation is based on a J2EE application server. J2EE
applications are assembled from components (self-contained software units). The
components include Enterprise JavaBeans (EJBs) that are deployed on an application
server. EJBs run in an environment called an EJB container. Together, the server and
container provide a bean's runtime environment. The container intercepts remote
invocations on the bean and is responsible for invoking appropriate low-level services,
such as persistence and transaction management, for each operation on the bean. The
application programmer concentrates on the functional (business logic) aspects of a
bean's behaviour while the container provides services to ensure correct, non-functional
behaviour.

Container

EJB Component

EJB
Client

Services

Non
Repudiation

Messaging

Persistence

Transaction
Management

Figure 6. J2EE-based component architecture with non-repudiation
Figure 6 shows an EJB client invoking an operation on an EJB component and the
container interception of the invocation to provide various services. As shown, the
intention is to add a non-repudiation service to regulate access to EJBs.
Our prototype extends the JBoss J2EE application server [8]. JBoss makes systematic
use of reflection and invocation path interceptors to support extension to its existing
services and the addition of new services. This provides a straightforward mechanism
for the implementation of the trusted interceptors introduced in Section 3. Although this
exploits JBoss-specific mechanisms, similar support is found in other component-based
systems (for example, the use of interceptors in the Jironde flexible transaction
framework [19]). Furthermore, even when the introduction of new interceptors is not
directly supported by a component system, the well-known smart proxy design pattern
[9] can be followed to introduce a layer between application clients and application
server components. An example of this approach is the use of smart proxies to support
on-line upgrades to component systems [17].
In JBoss, interceptors are used to invoke container-level services to meet requirements
specified in a component's deployment descriptor. An application-level invocation
passes through a chain of interceptors, each interceptor completing some task before
passing the invocation to the next interceptor in the chain. Existing services can be
modified or new services added to a container by inserting additional interceptors in the
chain. JBoss uses reflection to provide the interceptor with access to the application-
level method called, the method parameters, the target bean and its deployment
descriptor. JBoss provides interceptors both at the server and the client (using a

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

dynamic proxy). Thus the mechanism supports the execution of additional logic at the
client-side on behalf of a container-level service.
The prototype implementation uses JBoss interceptors to access our non-repudiation
middleware that uses a generic B2BCoordinator service for the exchange of protocol
messages. Custom protocol handlers are registered with the coordinator to execute non-
repudiation protocols. The coordinator service also provides access to generic services
that support execution of protocols (such as credential management and state storage).
The combination of generic coordinator service and custom protocol handlers provides
a middleware that is adaptable to different application requirements, for example to
execute different protocols and to support the different interaction styles described in
Section 3.1
The implementations are based on the direct trusted interceptor interaction shown in
Figure 3(c). Furthermore, no TTP is used to support protocol execution. Thus, the
implementation of service invocation guarantees safety and liveness if client and server
satisfy the trusted interceptor assumptions. The implementation of information sharing
guarantees: (i) no invalid changes to shared information whatever the behaviour of
participants, and (ii) liveness if all parties satisfy the trusted interceptor assumptions.
The flexibility inherent in our approach means that we can transform these
implementations by introducing a TTP to support execution of fault-tolerant fair
exchange protocols of the kind described in [7]. This transformation would then allow
us to relax the strong assumptions about the parties to the interaction.

4.1 B2BCoordinator service and protocol handlers
Each trusted interceptor provides a B2BCoordinator service for the exchange of
messages with other trusted interceptors. In the J2EE implementation, this service is
exported as a remote object that remote trusted interceptors make invocations on to
deliver messages. This service is the external entry point for execution of non-
repudiation protocols. The interface is:

B2BCoordinatorRemote {

 void deliver(B2BProtocolMessage msg);

 B2BProtocolMessage deliverRequest(B2BProtocolMessage msg);

}

Remote invocation of deliver results in delivery of the given message (as a parameter
to the call) from the remote party. deliver can be used for synchronous or asynchronous
protocol execution. deliverRequest is a convenience method that allows a remote party
to deliver a message and then to wait synchronously for a response (the result of the
call). A B2BProtocolMessage is an interface to information common to non-repudiation
protocol messages — request (protocol run) identifier, sender, protocol step, signed
content, payload etc. Concrete implementations of B2BProtocolMessage meet protocol-
specific requirements.
To execute specific protocols, and meet different application or platform requirements,
custom protocol handlers are registered with the coordinator service. The coordinator is
responsible for mapping an incoming protocol message to an appropriate handler. The
coordinator also provides access to local services that are not protocol or platform
specific. All protocol handlers provide the following interface to the local coordinator
service to process incoming messages:

B2BProtocolHandler {

 void process(B2BProtocolMessage msg);

Trust and Security in Composite Services 25

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

 B2BProtocolMessage processRequest(B2BProtocolMessage msg);

}

Protocol handlers use the coordinator service provided by remote parties to deliver
outgoing protocol messages. As discussed below, for non-repudiable service invocation,
a B2BInvocationHandler initiates protocol execution by an appropriate protocol
handler. For non-repudiable information sharing, a B2BObjectController initiates
protocol execution.

4.2 Implementation of non-repudiable service invocation
Client

Client Proxy

Other JBoss
interceptors

JBoss NR
Interceptor

B2B Coordinators

Server

Other JBoss
Interceptors

JBoss NR
Interceptor

EJB Component
EJB Client

B2B Protocol
Handlers

Trusted Interceptor

B2B Invocation
Handlers

Container Services

Trusted Interceptor

Figure 7. JBoss/J2EE-based implementation of non-repudiable invocation
In J2EE, service invocation equates to the remote invocation of an operation on an
enterprise bean. As shown in Figure 7, the JBoss facility for server- and client-side
interceptors is used to render the operation non-repudiable. The client's reference to the
remote bean is a dynamic proxy generated by the server. This proxy contains client-side
interceptors that are typically used for context propagation. We add an extra interceptor
— the JBoss NR interceptor — to both client and server invocation paths. These NR
interceptors are responsible for triggering execution of a non-repudiation protocol that
achieves the exchange described in Section 32. The client-side NR interceptor accesses
the client's non-repudiation middleware that in turn manages the client's participation in
protocols and its access to supporting infrastructure to store evidence etc.
Each interceptor in a chain may execute on both the outgoing and incoming invocation
path. To achieve non-repudiation of the request as constructed by the client and to
verify the integrity of the response presented to the client, the client-side NR interceptor
is the first in the chain on the outgoing path (and last on the return path). On the server-
side, to verify the integrity of the request as it entered the server and to provide non-
repudiation of the response as it leaves the server, the NR interceptor is the first in the
chain on the incoming path (the last on the return path).
Each JBoss interceptor has an invoke operation that takes an Invocation object* as a
parameter for the interceptor to process in some way. The interceptor then passes the
Invocation to the next interceptor in the chain by calling that interceptor's invoke
operation. The invoke operation of the client-side JBoss NR interceptor is:

Public Object invoke(Invocation inv) {

 B2BInvocationHandler b2bInvHdlr =

* an encapsulation of the client's service invocation, include contextual information and related
payload

Trust and Security in Composite Services 26

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

 B2BInvocationHandler.getInstance("JBossJ2EE", "direct");

 B2BInvocation b2bInv =

 new JBossB2BInvocation(nextInterceptor(), inv);

 Return b2bInvHdlr.invoke(b2bInv); }

getInstance is a factory method that returns a reference to a B2BInvocationHandler for
the given platform ("JBossJ2EE") to execute the given protocol ("direct"). The concrete
implementation of a B2BInvocationHandler is under control of the client. A
B2BInvocation object is a generic wrapper for platform-specific representations of the
service to invoke and the invocation parameter(s). For a JBossB2BInvocation, the
service to invoke is the next interceptor in the chain and a JBoss Invocation object
encapsulates the invocation parameters. When invoke is called, the general behaviour of
the client-side B2BInvocationHandler is:

1. obtain a reference to or instantiate the local B2BCoordinator service;

2. obtain a reference to or instantiate a protocol handler for the given protocol and
register the handler with the coordinator service;

3. request that the protocol handler execute its non-repudiation protocol using the
given service and invocation parameters; and

4. return the outcome of protocol execution (normally the server's response) to the
client.

To start execution of the protocol, the client-side B2BInvocationHandler replaces the
arguments to the service invocation with the first message of the protocol and a
reference to its local coordinator service. These are then passed up through the
interceptor chain to the server. When the server-side NR interceptor receives the
Invocation object, it instantiates a JBoss-specific B2BInvocationHandler object and
calls the B2BInvocationHandler's invoke method with the Invocation object as a
parameter. The general behaviour of the server-side B2BinvocationHandler is:

1. obtain a reference to or instantiate the local B2BCoordinator service;

2. obtain a reference to or instantiate a protocol handler for the type of
B2BProtocolMessage encapsulated in the Invocation object and register the
handler with the coordinator service; and

3. request that the protocol handler execute its non-repudiation protocol using the
protocol message and remote coordinator reference (obtained from the
Invocation object).

At the appropriate point during execution of the non-repudiation protocol, the client's
request is actually passed through the interceptor chain to the EJB component for
execution. The result of this execution is then used to complete the non-repudiation
protocol.
The application programmer on the server side is responsible for identifying, in a bean's
deployment descriptor, when non-repudiation is required and for identifying the
platform and protocol for instantiation of the B2BInvocationHandler by the NR
interceptor. Thus the server controls activation of non-repudiation. However, the client
controls its own participation, through its own implementations of
B2BInvocationHandler, B2BProtocolHandler and B2BCoordinator. Thus, for example,
the client may change the behaviour of its B2BInvocationHandler to attempt to re-

Trust and Security in Composite Services 27

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

negotiate the non-repudiation protocol to execute. As shown, the NR interceptor,
B2BInvocationHandler, B2BProtocolHandler and B2BCoordinator comprise each
party's trusted interceptor.

4.3 Implementation of non-repudiable information sharing

B2B Coordinators

EJB
Client

Org. A Server Org. B Server

Application
Interface

B2B Protocol
Handlerssession

bean

State Validators

session
bean

B2BObject
Controller

Trusted Interceptor

B2BObject
Controller

Trusted Interceptor

B2BObject

entity
bean

B2BObject

entity
bean

Figure 8. JBoss/J2EE-based implementation of non-repudiable information
sharing

The implementation of non-repudiable information sharing is based on our previous
work on B2BObjects. This provides the abstraction of shared information depicted in
Figure 5(b) by coordinating the state of local (object) replicas that encapsulate the
information. Figure 8 illustrates the component-based implementation when two
organisations, A and B, share a B2BObject and A is updating the object state. As in a
standard J2EE application, an EJB client makes invocations through an application
interface (a session bean) that may result in access and update to an associated entity
bean. In this case, the entity bean has been identified as a B2BObject that should be
coordinated with remote replicas. An interceptor traps invocations on the entity bean to
ensure that a B2BobjectController controls access and update to the bean. The controller
is the local interface to configuration, initiation and control of information sharing. It
uses protocol handlers and a coordinator service to execute non-repudiable state and
membership coordination protocols with remote parties. Implementations of the
interceptor, controller, protocol handlers and coordinator are all provided by the
middleware, as is the supporting infrastructure to store evidence etc. The controller uses
application-specific validation listeners to validate state and membership changes
proposed by remote parties. Figure 8 shows B's controller validating A's proposed
update by appealing to one or more state validators (implemented as session beans). The
update is only applied to the replicas if B agrees to the proposal. The process is the
same for an update proposed by B. Furthermore, the implementation supports sharing
by more than two parties.
The middleware-provided JBoss interceptor is responsible for interaction with the
B2BobjectController, and, through the controller, the B2Bobjects middleware. The
application programmer is responsible for: identifying an entity bean as a B2BObject;
providing configuration information in the bean's deployment descriptor (for example,
to identify validator beans); and providing implementations of one or more session
beans to perform validation. Optionally, the application programmer may specify that a
method in the application interface should result in a series of operations on an
underlying B2BObject bean being “rolled-up” into a single coordination event. The
enhancement of an entity bean to become a B2BObject is effectively transparent to the
local EJB client and its application interface.

Trust and Security in Composite Services 28

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

5. Related work
We are not aware of other work that provides systematic integration of services for
trusted interaction with component middleware. There is a Web Services non-
repudiation proposal [10] that specifies a mechanism to request and send a signed
receipt for a SOAP (XML-encoded) message in order to support so-called “voluntary”
non-repudiation. The OASIS Digital Signature Service [18] proposes XML
request/response protocols for signing, verifying and time-stamping data. The Universal
Postal Union has proposed the Global Electronic Postmark [22] (EPM) standard. This is
a TTP service for generation, verification, time-stamping and storage of non-repudiation
evidence. The service would also support linking of evidence under a unique transaction
identifier to allow business transaction events to be bound together. None of these
proposals provide for the exchange of non-repudiation evidence or the governance of
complex interactions. These would have to be delivered at the application level with the
proposed services used as back-end infrastructure (which in the case of EPM would be
provided by a TTP).
Early work by Clark and Wilson [4] on security policy stressed the importance of data
integrity in the commerce domain (as opposed to the military domain's focus on
disclosure). In the Clark-Wilson model constrained data items are only manipulated
through verified transformation procedures as part of well-formed transactions. This
ensures that transformations respect an organisation's integrity rules, for example
respecting good accounting practice, and are logged for audit. The model was concerned
with enforcement of policy within organisations. The use of verified transformation
procedures that mediate the actions within an organisation is similar to the use of trusted
interceptors as mediators between organisations.
There has been much recent work on fair exchange and fair non-repudiation, and on the
formal verification of protocols. Kremer et al [12] summarise the state of the art and
provide a useful classification of protocols according to types of fairness and the role of
TTPs in protocols. There have also been contributions on the transformation of fair
exchange [13, 7] to meet fault tolerance requirements. This body of work can be
brought to bear on the choice of protocols that trusted interceptors execute to meet
interaction requirements.
The work of Minsky et al on Law Governed Interaction (LGI) [15] represents one of the
earliest attempts to provide coordination between autonomous organisations. Trusted
agents act as mediators that comply with a global policy. This is similar to the trusted
interceptor abstraction in that the interaction between agents is assumed to be legal. LGI
does not address systematic non-repudiation.
Wichert et al [23] used filters in CORBA to provide non-repudiable invocation on a
remote object. However, there approach is asymmetric — the client provides the server
with non-repudiation of origin of a request but there is no exchange to provide
corresponding evidence to the client. Their work did provide useful insights into
representation of evidence in XML documents. In our system the exact representation of
evidence is a matter for agreement between parties concerned, the important
requirement is that the representation can be subsequently rendered meaningful and
irrefutable.

6. Conclusions and future work
This paper presented a unified approach to regulated interaction based on the abstraction
of trusted interceptors that mediate interactions. The component-based middleware
implementation provides the basic building blocks for the construction of a composite
service by organisations collaborating to form a virtual enterprise. This can be extended

Trust and Security in Composite Services 29

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

to support transactional interaction. Our preliminary work in this area [6] shows how
B2BObjects can participate in distributed (JTA [3]) transactions. We intend to build on
this work to provide component-based transactional and non-repudiable interaction.
In effect, the trusted interceptor abstraction, and its realisation in middleware, provides
a flexible framework for implementation of different approaches to non-repudiable
service invocation (fair exchange) and regulated information sharing. Future work will
use this framework to provide a suite of protocols and other mechanisms that can be
deployed to meet different application requirements.
We intend to integrate the underlying mechanisms presented here with work on run-
time monitoring of contracts [16]. Contracts are represented as executable finite state
machines that can be verified using model-checking tools. We will, for example, use
implementations of the verified state machines to validate changes to shared
information for contract compliance.
There is a considerable body of work on Byzantine agreement and consensus in
distributed systems. We will explore the relationship between this work and the problem
of reaching unanimous, non-repudiable agreement on changes to shared information.
We also intend to investigate the use of Aspect Oriented Programming to allow the
declaration of non-repudiation as a non-functional aspect of a service that results in
support to exchange non-repudiation evidence etc.
Another area of work is the deployment of the middleware presented to render Web
Service interactions non-repudiable.
Finally, we are not aware of systematic work on the performance costs of non-
repudiation services (as opposed to the relative performance of cryptographic
algorithms). There are a number of aspects to non-repudiation that impact on
performance, including the computational overhead of cryptographic algorithms; the
space overhead of evidence generated and the communication overhead of additional
messages to execute protocols. Our interceptor-based framework will allow us to
compare different implementations and their impact on performance.

Acknowledgements
This work is part-funded by the EU under projects IST-2001-34069: “TAPAS (Trusted
and QoS-Aware Provision of Application Services)”, IST-2001-37126: ADAPT
(Middleware Technologies for Adaptive and Composable Distributed Components) and
by the UK EPSRC under e-Science project GR/S63199/01: “Trusted Coordination in
Dynamic Virtual Organisations”. We thank our colleague Paul Ezhilchelvan for useful
discussion of this work.

Trust and Security in Composite Services 30

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

References

[1] R. Axelrod. The Evolution of Co-operation. Penguin Books, 1990.

[2] J. Bacon, K. Moody and W. Yao. Access Control and Trust in the use of Widely
Distributed Services. In Proc. IFIP/ACM Int. Middleware Conf., Springer LNCS 2218,
Heidelberg, Germany, 2001.

[3] S. Cheung and V. Matena. Java Transaction API (JTA version 1.0.1B). Sun
Microsystems Inc., http://java.sun.com/products/jta/index.html, 2002.

[4] D. R. Clark and D. R. Wilson. A Comparison of Commercial and Military Computer
Security Policies. In Proc. IEEE Symp. on Security and Privacy, pp. 184–194, 1987.

[5] N. Cook, S. Shrivastava, and S. Wheater. Distributed Object Middleware to Support
Dependable Information Sharing between Organisations. In Proc. IEEE Int. Conf. on
Dependable Syst. and Networks (DSN), Washington DC, USA, 2002.

[6] N. Cook, S. Shrivastava, and S. Wheater. Middleware Support for Non-repudiable
Transactional Information Sharing between Enterprises. In Proc. IFIP Int. Conf. on
Distributed Applications and Interoperable Syst. (DAIS), Springer LNCS 2893, Paris,
France, Nov 2003.

[7] P. Ezhilchelvan and S. Shrivastava. Systematic Development of a Family of Fair
Exchange Protocols. In Proc. 17th IFIP WG 11.3 Working Conf. on Database and
Applications Security, Colorado, USA, 2003.

[8] M. Fleury and F. Reverbel. The JBoss Extensible Server. In Proc.
ACM/IFIP/USENIX Int. Middleware Conf., Springer LNCS 2672, Rio de Janeiro,
Brazil, Jun 2003.

[9] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns - Elements of
Reusable Object-Oriented Software. Addison-Wesley, 1995.

[10] E. Gravengaard, G. Goodale, M. Hanson, B. Roddy, and D. Walkowski. Web
Services Security: Non Repudiation Proposal Draft 05.
Reactivity,http://schemas.reactivity.com/2003/04/web-services-nonrepudiation-05.pdf,
Apr 2003.

[11] A. Herzberg, Y. Mass, J. Mihaeli, D. Naor, and Y. Ravid. Access Control Meets
Public Key Infrastructure, Or: Assigning Roles to Strangers. In Proc. IEEE Symp. on
Security and Privacy, Oakland, USA, 2000.

[12] S. Kremer, O. Markowitch, and J. Zhou. An Intensive Survey of Fair Non-
repudiation Protocols. Computer Communications, 25:1601–1621, 2002.

[13] P. Liu, P. Ning, and S. Jajodia. Avoiding Loss of Fairness Owing to Process
Crashes in Fair Data Exchange Protocols. In Proc. IEEE Int. Conf. on Dependable Syst.
and Networks (DSN), New York, USA, 2000.

Trust and Security in Composite Services 31

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

[14] O. Markowitch, D. Gollmann, and S. Kremer. On Fairness in Exchange Protocols.
In Proc. 5th Int. Conf. on Information Security and Cryptology (ISISC 2002), Springer
LNCS 2587, 2002.

[15] N. Minsky and V. Ungureanu. Law-Governed Interaction: A Coordination and
Control Mechanism for Heterogeneous Distributed Systems. ACM Trans. Softw. Eng.
and Methodology, 9(3):273–305, 2000.

[16] C. Molina-Jimenez, S. Shrivastava, E. Solaiman, and J. Warne. Contract
Representation for Run-time Monitoring and Enforcement. In Proc. IEEE Int. Conf. on
E-Commerce (CEC), pages 103–110, Newport Beach, USA, 2003.

[17] S. Oberg, L. Tewksbury, L. Moser, and P. Melliar-Smith. Online Upgrades for
CORBA and EJB/J2EE. In Proc. IEEE Workshop on Dependable Middleware-Based
Systems (WDMS 2002), Washington DC, USA, 2002.

[18] T. Perrin, D. Andivahis, J. C. Cruellas, F. Hirsch, P. Kasselman, A. Kuehne, J.
Messing, T. Moses, N. Pope, R. Salz, and E. Shallow. Digital Signature Service Core
Protocols and Elements. OASIS Committee Working Draft,
http://www.oasisopen.org/committees/dss, Dec 2003.

[19] M. Prochazka. Jironde: A Flexible Framework for Making Components
Transactional. In Proc. IFIP Int. Conf. on Distributed Applications and Interoperable
Syst. (DAIS), Springer LNCS, 2893, Paris, France, Nov 2003.

[20] B. Schneier. Applied Cryptography. John Wiley and Sons, 2nd edition, 1996.

[21] Sun. Java 2 Platform Enterprise Edition (J2EE) Specification. Sun Microsystems
Inc., http://java.sun.com/j2ee/, 1.4 edition, 2003.

[22] UPU. Global EPM Non-repudiation Service Definition and the Electronic
Postmark 1.1. Universal Postal Union, http://www.globalepost.com/prodinfo.htm, Oct
2002.

[23] M. Wichert, D. Ingham, and S. Caughey. Non-repudiation Evidence Generation for
CORBA using XML. In Proc. IEEE Annual Comp. Security Applications Conf.,
Phoenix, USA, 1999.

[24] W. Winsborough, K. Seamons, and V. Jones. Automated Trust Negotiation. In
Proc. DARPA Inf. Survivability Conf. and Exposition, Hilton Head, USA, 2000.

[25] B. F. Zhou, J. and R. Deng. Validating Digital signatures without TTP’s Time-
stamping and Certificate Revocation. In Proc. 2003 Inf. Security Conf., Springer LNCS
2851, Bristol, UK, 2003.

[26] J. Zhou and D. Gollmann. Evidence and non-repudiation. J. Network and Comp.
Applications, 20(3):267–281, 1997.

Trust and Security in Composite Services 32

	Dependencies with other deliverables
	1. Introduction
	2. Requirements and Architectural Concepts
	2.1. Conversations
	2.2. Contract mediated conversations

	3. Non-repudiated Interactions
	3.1 Trusted interceptor abstraction
	3.1.1 Non-repudiable service invocation (NR-Invocation)
	3.1.2 Non-repudiable information sharing (NR-Sharing)

	4. Contract Monitoring and Enforcement
	5. Concluding Remarks
	References
	Appendix: Component Middleware to Support Non-repudiable Ser
	1. Introduction
	2. Motivating example
	3. Building blocks for trusted interaction
	3.1 Trusted interceptors and trust domains
	3.2 Non-repudiable service invocation
	3.3 Non-repudiable information sharing
	3.4 Evidence generation requirements
	3.5 Infrastructure requirements

	4. Component-based implementation
	4.1 B2BCoordinator service and protocol handlers
	4.2 Implementation of non-repudiable service invocation
	4.3 Implementation of non-repudiable information sharing

	5. Related work
	6. Conclusions and future work
	Acknowledgements
	References

