

ADAPT
IST-2001-37126

Middleware Technologies for Adaptive and

Composable Distributed Components

Project funded by the
European Commission under the
Information Society Technologies
Programme of the 5th Framework

(1998-2002)

Composition Language

Deliverable Identifier: D7
Delivery Date: 19th September 2003
Classification: Public Circulation
Authors: Simon Woodman, Santosh Shrivastava, Stuart Wheater, Doug Palmer
Document version: 1.0 17th September 2003

Contract Start Date: 1st September 2002
Duration: 36 months
Project coordinator: Universidad Politécnica de Madrid (Spain)
Partners: Universitá di Bologna (Italy), ETH Zürich (Switzerland), McGill

University (Canada), Universitá degli Studi di Trieste (Italy),
University of Newcastle (UK), Arjuna Technologies Ltd. (UK)

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

D7: Composition Language 1

CONTENTS

1. Introduction 2
2. Language Overview 3
3. Language Reference 5
4. Formal Mapping to π-Calculus 13
5. Examples 14
6. Schema 18
7. References 20

Appendix A: A system for Distributed Enactment of Composite Web Services 22

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

D7: Composition Language 2

1 Introduction

A composition language can be used to specify the structure and properties of a process.
The composition language to be described here has been specifically designed to
express process composition and inter-task dependencies of fault-tolerant distributed
applications whose executions could span several autonomous organizations and
arbitrarily large durations. “Tasks” are application specific units of computation and
equate to the invocation of a web service. The work is motivated by the observation that
an increasingly large number of distributed applications are constructed by composing
them out of existing applications, which are executed in a heterogeneous environment.
The resulting applications can be very complex in structure, containing many
notification and dataflow dependencies between their constituent applications.
Furthermore, the execution of such an application may take a long time to complete
(days, weeks or even months), and may contain long periods of inactivity, often due to
the constituent applications requiring user interventions. In a distributed environment, it
is desirable that long running applications have support for fault-tolerance and dynamic
reconfiguration: machines may fail, services may be moved or withdrawn and
application requirements may change. In such an environment it is essential that the
structure of applications can be modified dynamically (during execution) to reflect these
changes.

The execution of an application is modelled as the execution of a collection of
interdependent tasks (activities). A task represents a unit of work to be done in the form
of an invocation of a web service (e.g., a request to book a hotel room). A “process” is
termed the composition of one or more tasks and other processes. Each process is
regarded as a single logical unit. Fig. 1 depicts the inter-task dependencies of four tasks
(t1, ..., t4); t2 and t3 start once t1 finishes and t4 starts after both t2 and t3 have finished. A
dependency could be just a notification dependency (shown by a dotted arc, indicating
that t2 can start only after t1 has terminated) or a dataflow dependency (shown by a solid
arc, indicating that, say t3 needs input data from t1). There follows a discussion of the
four requirements of the model: fault-tolerance, dynamic reconfiguration, modularity
and interoperability.

Figure 1, Inter task dependencies.

Fault-tolerance: The composition language offers application level fault tolerance in the
form of alternate dependencies. Processes can be structured such that a task’s input can
come from multiple sources. This gives a degree of fault tolerance through redundancy.
In our model compensatory tasks can be used to recover from situations where a task
terminates by producing a fault message. To ensure processing continues despite
processor failures our model allows the fragmenting of a process and its coordination

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

D7: Composition Language 3

from a number of different hosts. A finite number of network related failures can be
tolerated by retransmitting data between these hosts.

Dynamic Reconfiguration: A long running application is likely, at some point during its
execution, to encounter changes in the environment within which it is executing. As
stated earlier, these environmental changes could include machine and network related
failures, services being moved or withdrawn, or even the application’s functional
requirements being changed. Mechanisms that will allow applications to change their
internal structures to ensure forward progress are therefore required. It should be
therefore possible to change the structure of a running application by adding/deleting
tasks, notifications and dependencies.

Modularity: A process definition should enforce locality of modifications; only the parts
of the script directly affected by a change should need changing. For example, adding
an additional input dependency to a task should only affect the script for that task.
Further, the composition language should provide flexible means for specifying the
composition of a task in terms of other primitive tasks.

Interoperability: It should be possible to compose an application out of component
applications in a uniform manner, irrespective of the programming languages in which
the component applications have been written and the operating systems of the host
platforms. Web services aid interoperability due to the standardised protocols used to
communicate with them. SOAP [1] is used as a protocol to access web services, whose
interfaces are described using WSDL [2] and can be located in a UDDI repository [3].
As long as the web services used conform to the specifications, the implementation of
these services is irrelevant.

2 Language Overview

There are several industry led efforts aimed at specifying composition languages for
web services, however all of these language taken a centralised view of composition and
subsequent execution. For example the use of shared variables makes it very difficult to
coordinate the execution in a distributed manner. Also, many of these languages specify
complicated control flow mechanisms, making it difficult to analyse such compositions.
This composition language has been developed with both of these drawbacks in mind, it
contains elements to allow distributed composition and the simple data flow sequencing
model has been mapped to π-calculus to allow analysis of compositions.

The composition language has been designed to allow the specification of the structure
of applications at a level of abstraction which allows the composite service designer to
concentrate on ensuring the correct functional behaviour of the workflow application,
even in the presence of failures. Fault tolerance requirements of applications have been
split into the requirements at the application level itself and at the system level
(execution environment). The composition language provides notations and structures
for meeting modularity and application level fault-tolerance requirements, whereas the
execution environment is responsible for meeting system level fault tolerance. Meeting
interoperability and dynamic reconfiguration requirements are also the responsibility of
the execution environment. There follows a description of main features of the
composition language and the execution environment and then a comprehensive
discussion of the language constructs and their use.

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

D7: Composition Language 4

There is both a graphical as well as a textual representation of the composition. A
graphical representation of a task is given in fig. 2. It depicts a task (called task) that has
one input set (I1) with two data parts (i1 and i2). These correspond to the messages and
parts defined in the WSDL document describing the service. The input sets must have
all of its input parts available (input dependencies satisfied) before the task can start. A
task terminates in one of the named output states (called outcomes). One of these
outcomes is considered a normal outcome and all others are considered fault outcomes.
In figure 2, O1 represents an output message and F1 represents a fault message. These
terms are analogous to the web service returning an output or fault message as described
in WSDL. Each outcome of a task has a distinct set of parts, which can be used as input
objects by subsequent tasks or output objects by composing tasks. The output message
in figure 2 has two named parts: o1 and o2 with respectively.

Figure 2, a task.

Process Definition: The language allows the definition of processes in two ways:

• In-line – this refers to the case when an anonymous process is defined within
another process for the purposes of modularity. It is not possible to instantiate
this process without the parent process being instantiated and it cannot be
referenced from other processes.

• Out-of-line – out-of-line definition allows a designer to re-use process
definitions which have been defined in a separate document. These processes
can be referred to from within another process or instantiated on their own. This
structure aids code re-use.

Instantiation Time: There are also two times at which the designer of a process
definition can choose to instantiate the tasks and processes within it:

• Early – when early (traditional) instantiation is used, all of the tasks, processes
and the sub processes constituent tasks etc. are loaded into the execution
environment and initialised when the parent process is instantiated. This leads to
a more static system which is easier to reason about but more difficult to modify.

• Late – late instantiation results in the tasks and sub processes of a process not
being instantiated until they are able to run, i.e. when all of their input
dependencies are satisfied. Late instantiation implies that only those parts of
large process definitions which are needed will be instantiated, which allows
more efficient use of resources. It also allows the designer to perform recursion.
This happens when a late instantiated process refers to itself; when tasks within
the process terminate with a particular outcome it will instantiate itself again and
recurse. This gives a great deal of flexibility to the process designer.

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

D7: Composition Language 5

Inter-task Dependencies: As described above, the language is structured in terms of
tasks, i.e. an invocation of a web service and processes which are compositions of tasks
and other processes. The control structure of the processes is described in terms of
dependencies between those tasks and processes. Dependencies can control when a task
is executed, by using input dependencies and when a process completes, by using output
dependencies. Input dependencies describe when a task can start execution, either in
terms of what other tasks have started/completed, or in terms of where the input data
needs to come from in order for the task to start. Output dependencies describe how the
output of a process is “built” from the output of the constituent tasks.

Execution Environment: The execution environment provides facilities to enable sets of
inter-related tasks and processes forming an application to be executed and supervised
in a dependable manner. The execution environment is described further in a paper
shown in Appendix A.

3 Language Reference

This section is intended to provide a comprehensive reference to the composition
language, beginning by showing the structure of the language with a UML Class
diagram and proceeding to a discussion of the individual language constructs.

3.1 ImportType

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

D7: Composition Language 6

The importType allows the user to import a schema and namespace into the process
definitions document. When another processDefinition is imported, the user can refer to
elements defined in that processDefinition using the namespace defined.

<xsd:complexType name="ImportType">
 <xsd:attribute name="namespace" type="xsd:anyURI" use="required"/>
 <xsd:attribute name="location" type="xsd:anyURI" use="required"/>
</xsd:complexType>

The ImportType has no sub elements.

The ImportType has the following attributes:

• namespace - the namespace to refer to the processDefinition by.
• location - the location of the processDefinition to import.

Usage would be:

<import name="myImport" location="http://mydomain/myImportDoc"/>

3.2 ProcessDefinitionRootType

The ProcessDefinitionRootType is the type at the root of the process definition. The
designer of the service must specify the composition in terms of the subprocesses which
compose the process and how the output of the composition is formed from the
subprocesses.

<xsd:complexType name="ProcessDefinitionRootType">
 <xsd:sequence>
 <xsd:element name="import" type="tns:ImportType" minOccurs="0"
maxOccurs="unbounded"/>
 <xsd:element name="subProcesses" type="tns:SubProcessesType" minOccurs="0"/>
 <xsd:element name="outputDependencies" type="tns:DependencyListType" minOccurs="0"/>
 </xsd:sequence>
 <xsd:attributeGroup ref="tns:ActionAttributes"/>
 <xsd:attribute name="targetNamespace" type="xsd:anyURI"/>
</xsd:complexType>

The ProcessDefinitionRootType has the following sub elements:

• import – the processDefinition to import as well as the associated namespace.
Described fully in Section 3.1.

• subProcesses – a list of the sub processes (tasks and processes which the
service is composed of.

• outputDependencies – a list of dependencies which will build the output
message of the composed service. This is described further in Sections 3.6 – 3.8

The ProcessDefinitionRootType has the following attributes:

• targetNamespace – the targetNamespace of the process definition
• ActionAttributes – Described fully in Section 3.9, these attributes describe

properties of the service such as the portType and operation.

Usage would be:
<processDefinitionRoot>
 <import … />
 <subProcesses>

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

D7: Composition Language 7

 …
 </subProcesses>
 <outputDependencies>
 …
 </outputDependencies>
</processDefinitionRoot>

3.3 ProcessDefinitionType

The ProcessDefinitionType is used to define processes which are themselves
composite. A process can be composed of other processes and tasks which are the
lowest level and equate to an invocation of a web service. A process is composed of
the inputDependencies which must be satisfied for it to be executed; the
subprocesses which compose it; the outputDependencies which construct the output
of the composition. It is possible to define a process both in-line and out-of-line. If in-
line definition is used, the subProcesses element contains the definition of the
composition. An alternative to defining anonymous processes is to reference one which
has been defined out-of-line in another document. To achieve this the definition
attribute should be used and no subprocesses element should be used. The definition
attribute should be a qualified reference to a process defined as a top level element in
another document.

A process can use either early or late instantiation indicated by an attribute defined in
the ActionAttributes group. This gives the possibility of either instantiating the
process when the parent process is instantiated, or when the process’s input
dependencies are satisfied. The latter case is discussed further in [4] where they are
referred to as Genesis Tasks. Late instantiation of a process allows recursion in a
process definition as a process can instantiate another instance of itself if it completes in
a particular state. A process should not refer to itself in a recursive manner if
lateInstantiation is set to false. This is considered an error in the process definition
and will be detected at validation time. Another benefit of late instantiation is that it
allows only those parts of a (potentially large) composition which are needed to be
loaded into memory. This allows resource usage on the server to be minimised.

<xsd:complexType name="ProcessDefinitionType">
 <xsd:choice>
 <xsd:sequence>
 <xsd:element name="inputDependencies" type="tns:DependencyListType"
 minOccurs="0"/>
 <xsd:element name="subProcesses" type="tns:SubProcessesType" minOccurs="0"/>
 <xsd:element name="outputDependencies" type="tns:DependencyListType"
 minOccurs="0"/>
 </xsd:sequence>
 </xsd:choice>
 <xsd:attributeGroup ref="tns:ActionAttributes"/>
 <xsd:attribute name="definition" type="xsd:QName"/>
</xsd:complexType>

The ProcessDefinitionType has the following sub elements:

• inputDependencies – a list of the dependencies and dataDependencies
which must be satisfied for the process to be executed

• subProcesses – a list of the sub processes (tasks and processes) which the
service is composed of.

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

D7: Composition Language 8

• outputDependencies – a list of dependencies which will build the output
message of the composed service. This is described further in Sections 3.6 – 3.8

The ProcessDefinitionType has the following attributes:

• ActionAttributes – Described fully in Section 3.9, these attributes describe
properties of the service such as the portType and operation.

• definition – if subProcesses are not specified, this attribute must be present
and must reference a processDefinitionRootType defined in another
document. The other document should be imported using the import element
and have the correct namespace defined.

Usage would be:

<processDefinition lateInstantiation=”false” logicalHost=”a”>
 <inputDependencies>
 …
 </inputDependencies>
 <subProcesses>
 …
 </subProcesses>
 <outputDependencies>
 …
 </outputDependencies>
</processDefinition>

Or alternatively:

<processDefinition definition="ns2:process2"/>

3.4 TaskDefinitionType

The TaskDefinitionType is used to define an action which invokes a actual web
service as part of the composition. It is the lowest level action element within a
composition and can be considered as a black box. The task must specify under what
situations it can be executed using the inputDependencies element and specify how to
invoke the service using the port attribute.

The TaskDefinitionType has the following sub elements:

• inputDependencies – a list of the dependencies and dataDependencies
which must be satisfied for the task to be executed

The TaskDefinitionType has the following attributes:

• ActionAttributes – Described fully in Section 3.9, these attributes describe
properties of the service such as the portType and operation.

• port – the qualified name of the port defining the service in the associated
WSDL document.

<xsd:complexType name="TaskDefinitionType">
 <xsd:choice>
 <xsd:element name="inputDependencies" type="tns:DependencyListType"
 minOccurs="0"/>
 </xsd:choice>
 <xsd:attributeGroup ref="tns:ActionAttributes"/>
 <xsd:attribute name="port" type="xsd:QName"/>
</xsd:complexType>

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

D7: Composition Language 9

Usage would be:

<taskDefinition name="myTask" portType="myTaskPT”
 operation="myOperation” logicalHost="ns2:server2">
 <inputDependencies>
 …
 </inputDependencies>
</taskDefinition>

3.5 SubProcessesType

The SubProcessesType is used within a processDefinition to list the constituent
tasks and processes which it is composed of. As described in Section 3.3, if the
subProcesses are not defined within the processDefinition, the definition of the
process should be referenced using the definition attribute and defined in a separate
document.

<xsd:complexType name="SubProcessesType">
 <xsd:sequence>
 <xsd:choice maxOccurs="unbounded">
 <xsd:element name="taskDefinition" type="tns:TaskDefinitionType"/>
 <xsd:element name="processDefinition" type="tns:ProcessDefinitionType"/>
 </xsd:choice>
 </xsd:sequence>
</xsd:complexType>

The SubProcessesType has the following sub elements:

• An unbounded set of task and process definitions which specify the
composition of the process.

The SubProcessesType has no attributes.

Usage would be:

<subProcesses>
 <taskDefinition … />
 …
 <processDefinition …>
 … <!—An inline process definition -->
 </processDefinition>
</subProcesses>

3.6 DependencyType

The DependencyType type is used to describe the situation where one task or process
is dependant on another one. That is, a task or process cannot begin executing until
another task is in a particular state. For instance, a task has terminated by producing a
fault message, or a process has begun execution because its input dependencies are
fulfilled.

The source and sink of the dependency must be specified using the
DependencyAttributes described in Section 3.10. These allow a task to specify
precisely the source of the dependency including particular outcomes. It is possible to
attach a priority to the dependency which is used to determine what should happen
when alternate dependencies become available simultaneously.

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

D7: Composition Language 10

<xsd:complexType name="DependencyType">
 <xsd:attributeGroup ref="tns:DependencyAttributes"/>
</xsd:complexType>

The DependencyType has no sub elements.

The DependencyType has the following attributes:

• DependencyAttribute group – this group is explained fully in Section 3.10

Usage would be:

<dependency source="ATask" sourceMessageType="output" priority=”10”/>

3.7 DataDependencyType

The DataDependencyType is used to model the situation when a down-stream task or
process requires data from and up-stream task or process in order to start or complete
execution. Normally, down-stream tasks require data which is the output of up-stream
tasks to start execution. However, processes must also use DataDependencies to
generate their output from the output of their constituent tasks and processes.

A DataDependency can reference either a wsdl:part of a message, or the entire
message. The latter case is the default if the partName attributes are not specified.

A DataDependency implies that there is also a Dependency present as the data cannot
be available until the up-stream task is in the required state.

<xsd:complexType name="DataDependencyType">
 <xsd:attributeGroup ref="tns:DependencyAttributes"/>
 <xsd:attribute name="sourcePartName" type="xsd:string" use="optional"/>
 <xsd:attribute name="sinkPartName" type="xsd:string" use="optional"/>
</xsd:complexType>

The DataDependencyType has no sub elements.

The DataDependencyType has the following attributes:

• DependencyAttribute group – this group is explained fully in Section 3.10
• sourcePartName – the wsdl:part of the message which is the source of the

data
• sinkPartName – the wsdl:part of the message which is the sink of the data

Usage would be:

<dataDependency source="ATask" sourceMessageType="output" sinkMessageType="input"/>

Or alternatively:

<dataDependency source="ATask" sourceMessageType="output" sourcePartName=”partA”
sinkMessageType="input" sinkPartName=”partB”/>

3.8 DependencyListType

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

D7: Composition Language 11

The DependencyListType is a utility type which allows both input and output
dependencies to be specified using the same type. It contains a list of Dependency and
DataDependency elements.

The DependencyListType has the following sub elements:

• a sequence of DependencyType and DataDependencyType elements to define
the execution order restrictions.

The DependencyListType has no attributes.

3.9 ActionAttributes

The ActionAttributes are used to define the action which a task or process refers
to. Each action can be considered to be a single unit of work and must be uniquely
identified within the processDefinition, i.e. the document. The ActionAttributes
have subtly different semantics depending on where they are used:

• A Task uses the portType and operation attributes to specify which abstract
operation must be invoked from the appropriate service (as defined by the
WSDL document with the same namespace).

• A top level ProcessDefinitionRoot uses the portType and operation to
specify which operation has been invoked on the service to cause the execution
of this composition.

• An in-line processDefinition should not specify either the portType or
operation attribute as the process does not necessarily refer to an operation
exposed by a web service.

The lateInstantiation attribute specifies whether the task or process should be
instantiated at the same time as the parent process or not. If the task or process is not
instantiated at the same time as the process it is instantiated when the input
dependencies are satisfied. This allows the composition to include conditional looping
and only those parts of a (potentially large) process which are needed must be loaded
into memory.

The logicalHost attribute is used to define which host is responsible for coordinating
the execution of the task or process if the composition is fragmented over multiple
hosts. This is a deployment attribute and the abstract hostname is bound to a concrete
host using the deployment descriptor. A full discussion of the deployment time options
is beyond the scope of this document.

<xsd:attributeGroup name="ActionAttributes">
 <xsd:attribute name="name" type="xsd:QName" use="required"/>
 <xsd:attribute name="portType" type="xsd:QName" use="optional"/>
 <xsd:attribute name="operation" type="xsd:NCName" use="optional"/>
 <xsd:attribute name="lateInstantiation" type="xsd:boolean" use="optional"
 default="false"/>

<xsd:complexType name="DependencyListType">
 <xsd:sequence>
 <xsd:element name="dependency" type="tns:DependencyType" minOccurs="0"
 maxOccurs="unbounded"/>
 <xsd:element name="dataDependency" type="tns:DataDependencyType" minOccurs="0"
 maxOccurs="unbounded"/>
 </xsd:sequence>
</xsd:complexType>

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

D7: Composition Language 12

 <xsd:attribute name="logicalHost" type="xsd:QName" use="required"/>
</xsd:attributeGroup>

3.10 DependencyAttributes

The DependencyAttribute group is used to uniquely identify the source and sink of
the inter-task dependencies. As the dependencies are child elements of the down-stream
task or process, it is only necessary to define the up-stream process or task directly.
However, both the source and sink message types and names must be specified if there
is the possibility of ambiguity. For instance, as a web service can only have one input
message, if the messageType is input the messageName need not be specified. In fact,
the messageName need only be used to differentiate between different types of faults
which a service can terminate with. The designer of the composition is required to use
enough of the attributes to uniquely identify the source and sink of the dependency.

The priority of a dependency determines what will happen if alternate sources of a
dependency become available simultaneously. The value of the priority attribute must
be a positive integer. The dependency which has the highest value will be selected. The
behavour when two dependencies have the same priority value is undefined. Priority is
only an issue for dataDependencies, where the highest available priority
dataDependency will be used at the time when the input/output/fault message is
completely available.

<xsd:attributeGroup name="DependencyAttributes">
 <xsd:attribute name="source" type="xsd:QName" use="required"/>
 <xsd:attribute name="sourceMessageType" type="tns:MessageTypeType" use="required"/>
 <xsd:attribute name="sourceMessageName" type="xsd:string" use="optional"/>
 <xsd:attribute name="sinkMessageType" type="tns:MessageTypeType" use="optional"/>
 <xsd:attribute name="sinkMessageName" type="xsd:string" use="optional"/>
 <xsd:attribute name="priority" type="xsd:integer" use="optional" default="0"/>
</xsd:attributeGroup>

3.11 MessageTypeType

The MessageTypeType defines an enumeration of the messageTypes allowed in WSDL.
This results in all messageTypes for the dependencies being forced to be either

• input
• output
• fault

<xsd:simpleType name="MessageTypeType">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="input"/>
 <xsd:enumeration value="output"/>
 <xsd:enumeration value="fault"/>
 </xsd:restriction>
</xsd:simpleType>

4 Formal mapping to pi-calculus
To ensure that the composition language is both complete and precise it has been
mapped onto π-calculus. π-calculus is a formal notation for modelling and analysing

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

D7: Composition Language 13

properties of mobile communicating systems. A communicating system in π-calculus is
a collection of processes exchanging messages via named channels. In [5] Milner
proves that communicating systems can be modelled with a relatively small set of
language primitives:

• sequence – P.Q, process P followed by process Q.
• summation (or choice) – P+Q, either process P or process Q.
• parallel composition – P|Q, both P and Q in parallel.
• replication - !P, P many times in parallel.
• receive – x(a), receive a message called a on channel x.
• send – x<a>, send a message a on channel x.

The first four primitives deal with the composition of processes, the final two primitives
deal with communication between processes.

As well as proving that the composition language has a good semantic base, a π-
calculus mapping allows formal reasoning about a composition. π-calculus gives elegant
mechanisms for dealing with mobility of processes, this should help when dealing with
changes to compositions. The equivalence relationships in π-calculus allow verification
that two π-calculus expressions are equal. This serves a dual purpose; firstly it allows
checking to ensure that a given composition respects a set of π-calculus based
sequencing constraints, such as those as described in [6], secondly it allows the
verification as to whether a set of sub-compositions still represents an original
composition. This is useful when a composition is distributed across a number of
controlling nodes.

In mapping the composition language to π-calculus a web service is regarded as a
process to be executed. The input message used to invoke the service is regarded as the
only input to the process. The output and fault messages generated by a service are
regarded as the output from the process. Hence a web service ‘A’ with an input message
‘ai’, an output message ‘ao’ and a fault message ‘af’, could be modelled with the π-
calculus as x(ai).A.(y<ao> + z<af>), where x,y,z are the channels over which the
messages are sent. As the composition language does not talk in terms of individual
web services and their associated input and output messages the π-calculus mapping is
slightly more complicated. The web service is identified by attributes of the
<TaskDefinition> tag, the port, portType and operation attributes combine to
identify the associated service. The input message is derived from either all or part of
other messages in the composition; the sourceMessageType, sourceMessageName,
sourcePartName attributes of dependencies are used to identify the data of interest.
Similarly, a dependency on an output or fault message generated by the execution of the
web service might only need part of the message. Attributes of the dependencies also
identify the links or channels between processes; the source attribute identifies the task
at the sending end of a channel and the recipient end of the channel is the task that
defines the dependency.

5 Examples

5.1 Talisman Application

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

D7: Composition Language 14

The talisman example shown in the diagram above is a simple process consisting of five
tasks executed in the following order – create, run, waitFor, getResults, destroy. The
initial input data is passed to the create method, if create is successful then its output is
passed to run as input. Then run is executed, if successful its results are passed as input
to waitFor. Next getResults is executed; if successful its results are passed as output of
the whole process. Finally the destroy operation is invoked, if successful then the
process is allowed to terminate successfully. If any of the operations return a fault then
the whole process terminates with a fault.

The WSDL for the services is shown below:

<wsdl:portType name="Talisman">
 <wsdl:operation name="createJob" parameterOrder="in0">
 <wsdl:input message="intf:createJobRequest" name="createJobRequest"/>
 <wsdl:output message="intf:createJobResponse" name="createJobResponse"/>
 <wsdl:fault message="intf:SoaplabException" name="SoaplabException"/>
 </wsdl:operation>
 <wsdl:operation name="destroy" parameterOrder="in0">
 <wsdl:input message="intf:destroyRequest" name="destroyRequest"/>
 <wsdl:output message="intf:destroyResponse" name="destroyResponse"/>
 <wsdl:fault message="intf:SoaplabException" name="SoaplabException"/>
 </wsdl:operation>
 <wsdl:operation name="getResults" parameterOrder="in0">
 <wsdl:input message="intf:getResultsRequest" name="getResultsRequest"/>
 <wsdl:output message="intf:getResultsResponse" name="getResultsResponse"/>
 <wsdl:fault message="intf:SoaplabException" name="SoaplabException"/>
 </wsdl:operation>
 <wsdl:operation name="run" parameterOrder="in0">
 <wsdl:input message="intf:runRequest" name="runRequest"/>
 <wsdl:output message="intf:runResponse" name="runResponse"/>
 <wsdl:fault message="intf:SoaplabException" name="SoaplabException"/>
 </wsdl:operation>
 <wsdl:operation name="waitFor" parameterOrder="in0">
 <wsdl:input message="intf:waitForRequest" name="waitForRequest"/>
 <wsdl:output message="intf:waitForResponse" name="waitForResponse"/>
 <wsdl:fault message="intf:SoaplabException" name="SoaplabException"/>
 </wsdl:operation>
</wsdl:portType>

The process definition for this process is shown below:

<?xml version="1.0" encoding="UTF-8"?>

<processDefinition name="talismanProcess" portType="TalismanProcessPT"
 operation="talismanProcess" xmlns="http://schemas.adapt.org/process-definition-2.1/"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <subProcesses>
 <taskDefinition name="createTask" portType="Talisman" operation="create">

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

D7: Composition Language 15

 <inputDependencies>
 <dataDependency source="talismanProcess" sourceMessageType="input"/>
 </inputDependencies>
 </taskDefinition>
 <taskDefinition name="runTask" portType="Talisman" operation="run">
 <inputDependencies>
 <dataDependency source="createTask" sourceMessageType="output"/>
 </inputDependencies>
 </taskDefinition>
 <taskDefinition name="waitForTask" portType="Talisman" operation="waitFor">
 <inputDependencies>
 <dataDependency source="runTask" sourceMessageType="output"/>
 </inputDependencies>
 </taskDefinition>
 <taskDefinition name="getResultsTask" portType="Talisman" operation="getResults">
 <inputDependencies>
 <dataDependency source="waitForTask" sourceMessageType="output"/>
 </inputDependencies>
 </taskDefinition>
 <taskDefinition name="destroyTask" portType="Talisman" operation="destroy">
 <inputDependencies>
 <dependency source="getResultsTask" sourceMessageType="output"/>
 </inputDependencies>
 </taskDefinition>
 </subProcesses>
 <outputDependencies>
 <dataDependency source="createTask" sourceMessageType="fault"
 sourceMessageName="SoaplabException" sinkMessageType="fault"
 sinkMessageName="SoaplabException"/>
 <dataDependency source="runTask" sourceMessageType="fault"
 sourceMessageName="SoaplabException" sinkMessageType="fault"
 sinkMessageName="SoaplabException"/>
 <dataDependency source="waitForTask" sourceMessageType="fault"
 sourceMessageName="SoaplabException" sinkMessageType="fault"
 sinkMessageName="SoaplabException"/>
 <dataDependency source="getResultsTask" sourceMessageType="fault"
 sourceMessageName="SoaplabException" sinkMessageType="fault"
 sinkMessageName="SoaplabException"/>
 <dataDependency source="destroyTask" sourceMessageType="fault"
 sourceMessageName="SoaplabExcepion" sinkMessageType="fault"
 sinkMessageName="SoaplabException"/>
 <dependency source="destroyTask" sourceMessageType="output"
 sinkMessageType="output"/>
 <dataDependency source="getResultsTask" sourceMessageType="output"
 sinkMessageType="output"/>
 </outputDependencies>
</processDefinition>

The π-calculus mapping for this example is:

ti(TalismanRequest).ci<CreateJobRequest> |
ci(CreateJobRequest).createTask.(ri<RunRequest> + f<SoaplabException>) |
ri(RunRequest).runTask.(wi<waitForRequest> + f<SoaplabException>) |
wi(WaitForRequest).waitForTask.(gi<GetResultsRequest> + f<SoaplabException>) |
gi(GetResultsRequest).getResultsTask.((go<getResultsResponse> | di<DestroyRequest>) +
f<SoaplabException>) |
di(DestroyRequest).destroyTask.(do<DestroyResponse> + f<SoaplabException>) |
(go(GetResultsResponse) | do(DestroyResponse)).to<TalisamnResponse> |
f(SoaplabException).tf<SoaplabException>

5.2 Process Order Application

This application involves the processing of a customer’s order. It has been modelled as
a process processOrderApplication which contains four constituent tasks:
paymentAuthorisation, checkStock, dispatch and paymentCapture. The relationship
between the tasks is shown below. To process an order, paymentAuthorisation and
checkStock tasks are executed concurrently. If both complete successfully then dispatch
task is started and if that task is successful the paymentCapture task is started. The

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

D7: Composition Language 16

internal structure of a process can be modified without affecting the tasks which supply
it with inputs or use it for inputs. In this case it would be possible to change the payment
and stock management policies, for example, causing payment capture even if the item
is not presently in stock (a regrettable practice), or the addition of a task which could
check the stock levels of the suppliers of the company, and arrange direct dispatch from
them.

The wsdl:portType for the application is shown below:

The process composition is shown below:

<?xml version="1.0" encoding="UTF-8"?>

<processDefinition name="processOrderApplicationProcess"
portType="ws:processOrderApplicationPT" operation="processOrderApplication"
logicalHost="ws:server1" xmlns:ws="http://myservice.com/processOrderApplication.wsdl"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <subProcesses>
 <taskDefinition name="paymentAuthorisationTask"
 portType="ws:processOrderApplicationPT" operation="paymentAuthorisation"
 logicalHost="ws:server1" >
 <inputDependencies>
 <dataDependency source="processOrderApplicationProcess"
 sourceMessageType="input"/>
 </inputDependencies>
 </taskDefinition>
 <taskDefinition name="checkStockTask" portType="processOrderApplicationPT"
 operation="checkStock" logicalHost="ws:server1" >
 <inputDependencies>
 <dataDependency source="processOrderApplicationProcess"
 sourceMessageType="input"/>
 </inputDependencies>
 </taskDefinition>
 <taskDefinition name="dispatchTask" portType="processOrderApplicationPT"
 operation="dispatch" logicalHost="ws:server1" >
 <inputDependencies>
 <dependency source="paymentAuthorisationTask" sourceMessageType="output"/>
 <dataDependency source="checkStockTask" sourceMessageType="output"/>
 </inputDependencies>
 </taskDefinition>
 <taskDefinition name="paymentCaptureTask" portType="processOrderApplicationPT"
 operation="paymentCapture" logicalHost="ws:server1" >
 <inputDependencies>
 <dependency source="dispatchTask" sourceMessageType="output"/>

<wsdl:portType name="purchaseOrderApplicationPT">
 <wsdl:operation name="paymentAuthorisation">
 <wsdl:input message="paymentAuthorisationRequest"
 name="paymentAuthorisationRequest"/>
 <wsdl:output message="paymentAuthorisationResponse"
 name="paymentAuthorisationResponse"/>
 </wsdl:operation>
 <wsdl:operation name="checkStock">
 <wsdl:input message="checkStockRequest" name="checkStockRequest"/>
 <wsdl:output message="checkStockResponse" name="checkStockResponse"/>
 </wsdl:operation>
 <wsdl:operation name="dispatch">
 <wsdl:input message="dispatchRequest" name="dispatchRequest"/>
 <wsdl:output message="dispatchResponse" name="dispatchResponse"/>
 </wsdl:operation>
 <wsdl:operation name="paymentCapture">
 <wsdl:input message="paymentCaptureRequest" name="paymentCaptureRequest"/>
 <wsdl:output message="paymentCaptureResponse" name="paymentCaptureResponse"/>
 </wsdl:operation>
</wsdl:portType>

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

D7: Composition Language 17

 <dataDependency source="paymentAuthorisationTask" sourceMessageType="output"/>
 </inputDependencies>
 </taskDefinition>
 </subProcesses>
 <outputDependencies>
 <dependency source="paymentAuthorisationTask" sourceMessageType="fault"
 sourceMessageName="paymentAuthorisationFault" sinkMessageType="fault"
 sinkMessageName="processOrderApplicationFault"/>
 <dependency source="checkStockTask" sourceMessageType="fault"
 sourceMessageName="checkStockFault" sinkMessageType="fault"
 sinkMessageName="processOrderApplicationFault"/>
 <dependency source="dispatchTask" sourceMessageType="fault"
 sourceMessageName="dispatchFault" sinkMessageType="fault"
 sinkMessageName="processOrderApplicationFault"/>
 <dependency source="paymentCaptureTask" sourceMessageType="output"
 sinkMessageType="output"/>
 <dataDependency source="dispatchTask" sourceMessageType="output"
 sinkMessageType="output"/>
 </outputDependencies>
</processDefinition>

The π-calculus mapping for this example is:

poi(ProcessOrderRequest).(pai<PaymentAuthorisationRequest> | csi<CheckSockRequest>) |
pai(PaymentAuthorisationRequest).paymentAuthorisationTask.(pci<PaymentCaptureRequest1> |
di<DispatchRequest1>) |
csi(CheckStockRequest).checkStockTask.(di<DispatchRequest2> + csf<CheckStockFault>) |
(di(DispatchRequest1) | di(DispatchRequest2).dispatchTask.((pci<PaymentCaptureRequest2>
| do<DispatchResponse>) + df<DispatchFault>) |
(pci(PaymentCaptureRequest1) |
pci(PaymentCaptureRequest2)).paymentCaptureTask.pco<PaymentCaptureResponse> |
(pco(PaymentCaptureResponse) | do(DispatchResponse)).poo<ProcessOrderResponse> |
(csf(CheckStockFault) + df(DispatchFault)).pof<ProcessOrderFault>

5.3 Looping example

This example shows how looping can be achieved. The figure below illustrates the
process structure associated with this example, it shows a task that is executed until it
completes successfully. If the task produces an output message then the process
terminates, if the task produces a fault message then the process re-executes the task.

The wsdl:portType would be:

<wsdl:portType name="Generic">
 <wsdl:operation name="method">
 <wsdl:input message="MethodRequest" name="MethodRequest"/>
 <wsdl:output message="MethodResponse" name="MethodResponse"/>

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

D7: Composition Language 18

 <wsdl:fault message="MethodException"/>
 </wsdl:operation>
</wsdl:portType>

The process composition would be:

<?xml version="1.0" encoding="UTF-8"?>

<processDefinition name="LoopingProcess" portType="ws:loopingProcessPT" operation="loop"
 lateInstantiation="true" logicalHost="ws:server1"
 xmlns:ws="http://myservice.com/Generic.wsdl"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">

 <subProcesses>
 <taskDefinition name="genericTask" portType="ws:Generic" operation="method"
 logicalHost="ws:server1" >
 <inputDependencies>
 <dataDependency source="LoopingProcess" sourceMessageType="input"/>
 </inputDependencies>
 </taskDefinition>
 <processDefinition name="loopTask" definition="LoopingProcess">
 <inputDependencies>
 <dependency source="genericTask" sourceMessageType="fault"/>
 <dataDependency source="LoopingProcess" sourceMessageType="input"/>
 <inputDependencies>
 </processDefinition>
 </subProcesses>
 <outputDependencies>
 <dataDependency source="genericTask" sourceMessageType="output"
 sinkMessageType="output"/>
 <dataDependency source="loopTask" sourceMessageType="output"
 sinkMessageType="output"/>
 </outputDependecies>
</processDefinition>

The π-calculus mapping for this example is:

!(li(LoopingProcessRequest).gi<MethodRequest> |
gi<MethodRequest>.genericTask.(go<MethodResponse> + li<LoopingProcessRequest>) |
go(MethodResponse).lo<LoopingProcessResponse>)

6 Schema

<?xml version="1.0"?>

<xsd:schema targetNamespace="http://schemas.adapt.org/process-definition-2.1/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 xmlns:tns="http://schemas.adapt.org/process-definition-2.1/"
 elementFormDefault="qualified" attributeFormDefault="unqualified">
 <xsd:import namespace="http://schemas.xmlsoap.org/wsdl/" schemaLocation="wsdl.xsd"/>
 <xsd:element name="processDefinition" type="tns:ProcessDefinitionRootType"/>
 <xsd:complexType name="ImportType">
 <xsd:attribute name="namespace" type="xsd:anyURI" use="required"/>
 <xsd:attribute name="location" type="xsd:anyURI" use="required"/>
 </xsd:complexType>
 <xsd:complexType name="ProcessDefinitionRootType">
 <xsd:sequence>
 <xsd:element name="import" type="tns:ImportType" minOccurs="0"
 maxOccurs="unbounded"/>
 <xsd:element name="subProcesses" type="tns:SubProcessesType" minOccurs="0"/>
 <xsd:element name="outputDependencies" type="tns:DependencyListType"
 minOccurs="0"/>
 </xsd:sequence>
 <xsd:attributeGroup ref="tns:ActionAttributes"/>
 <xsd:attribute name="targetNamespace" type="xsd:anyURI"/>
 </xsd:complexType>
 <!-- Elements to describe the process and its structure -->
 <xsd:complexType name="ProcessDefinitionType">

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

D7: Composition Language 19

 <xsd:choice>
 <xsd:sequence>
 <xsd:element name="inputDependencies" type="tns:DependencyListType"
 minOccurs="0"/>
 <xsd:element name="subProcesses" type="tns:SubProcessesType" minOccurs="0"/>
 <xsd:element name="outputDependencies" type="tns:DependencyListType"
 minOccurs="0"/>
 </xsd:sequence>
 </xsd:choice>
 <xsd:attributeGroup ref="tns:ActionAttributes"/>
 <xsd:attribute name="definition" type="xsd:QName"/>
 </xsd:complexType>
 <xsd:complexType name="TaskDefinitionType">
 <xsd:choice>
 <xsd:element name="inputDependencies" type="tns:DependencyListType"
 minOccurs="0"/>
 </xsd:choice>
 <xsd:attributeGroup ref="tns:ActionAttributes"/>
 <xsd:attribute name="port" type="xsd:QName"/>
 </xsd:complexType>
 <xsd:complexType name="SubProcessesType">
 <xsd:sequence>
 <xsd:choice maxOccurs="unbounded">
 <xsd:element name="taskDefinition" type="tns:TaskDefinitionType"/>
 <xsd:element name="processDefinition" type="tns:ProcessDefinitionType"/>
 </xsd:choice>
 </xsd:sequence>
 </xsd:complexType>
 <!-- Elements to describe the dependencies between tasks and processes -->
 <xsd:complexType name="DependencyType">
 <xsd:attributeGroup ref="tns:DependencyAttributes"/>
 </xsd:complexType>
 <xsd:complexType name="DataDependencyType">
 <xsd:attributeGroup ref="tns:DependencyAttributes"/>
 <xsd:attribute name="sourcePartName" type="xsd:string" use="optional"/>
 <xsd:attribute name="sinkPartName" type="xsd:string" use="optional"/>
 </xsd:complexType>
 <xsd:complexType name="DependencyListType">
 <xsd:sequence>
 <xsd:element name="dependency" type="tns:DependencyType" minOccurs="0"
 maxOccurs="unbounded"/>
 <xsd:element name="dataDependency" type="tns:DataDependencyType" minOccurs="0"
 maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>
 <!-- Utility definitions to define common attributes of tasks/processes and
 dependencies -->
 <xsd:attributeGroup name="ActionAttributes">
 <xsd:attribute name="name" type="xsd:QName" use="required"/>
 <xsd:attribute name="portType" type="xsd:QName" use="optional"/>
 <xsd:attribute name="operation" type="xsd:NCName" use="optional"/>
 <xsd:attribute name="lateInstantiation" type="xsd:boolean" use="optional"
 default="false"/>
 <xsd:attribute name="logicalHost" type="xsd:QName" use="required"/>
 </xsd:attributeGroup>
 <xsd:attributeGroup name="DependencyAttributes">
 <xsd:attribute name="source" type="xsd:QName" use="required"/>
 <xsd:attribute name="sourceMessageType" type="tns:MessageTypeType" use="required"/>
 <xsd:attribute name="sourceMessageName" type="xsd:string" use="optional"/>
 <xsd:attribute name="sinkMessageType" type="tns:MessageTypeType" use="optional"/>
 <xsd:attribute name="sinkMessageName" type="xsd:string" use="optional"/>
 <xsd:attribute name="priority" type="xsd:integer" use="optional" default="0"/>
 </xsd:attributeGroup>
 <xsd:simpleType name="MessageTypeType">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="input"/>
 <xsd:enumeration value="output"/>
 <xsd:enumeration value="fault"/>
 </xsd:restriction>
 </xsd:simpleType>
</xsd:schema>

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

D7: Composition Language 20

7 References
[1] Simple Object Access Protocol (SOAP) 1.1, http://www.w3.org/TR/SOAP/ as
viewed September 2003
[2] Web Services Description Language (WSDL) 1.1, http://www.w3.org/TR/wsdl.html
as viewed September 2003
[3] UDDI Specification, OASIS http://uddi.org/ as viewed September 2003
[4] Architectural Support for Dynamic Reconfiguration of Distributed Workflow
Applications, Shrivastava, S.K. and Wheater, S.M. IEE Proceedings - Software,
Volume 145, Issue 5, pp 155-162 Institution of Electrical Engineers (IEE), ISSN: 1462-
5970, 1998
[5] R.Milner, Communicating and Mobile Systems: The π-Calculus, Cambridge
University Press, 1999
[6] Deliverable 6: Service Specification, Adapt Project Deliverable, September 2003

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

D7: Composition Language 21

Appendix A: A System for Distributed Enactment
of Composite Web Services

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

D7: Composition Language 22

A System for Distributed Enactment of Composite
Web Services

S.J.Woodman1, D.J.Palmer1, S.K.Shrivastava1, S.M.Wheater2

1School of Computing Science, University of Newcastle, Newcastle upon Tyne, UK
{S.J.Woodman, Doug.Palmer, Santosh.Shrivastava}@ncl.ac.uk

2Arjuna Technologies Limited, Nanotechnology Centre, Newcastle upon Tyne, NE1 7RU, UK
Stuart.Wheater@arjuna.com

Abstract. Availability of a wide variety of Web services over the Internet offers opportunities of
providing new services built by composing them out of existing ones. Service composition poses a
number of challenges. A composite service can be very complex in structure, containing many
temporal and data-flow dependencies between their constituent services. However, constituent service
operations must be scheduled to run respecting these dependencies, despite the possibility of
intervening processor and network failures. The architecture must be scalable, providing a
decentralised coordination of service execution rather than based on a centralised scheduler; this is
particularly important for services spanning different organisations, where reliance on centralised
coordination would be impractical. This paper presents the design and implementation of DECS: a
workflow management system for Distributed Enactment of Composite Services. A novel feature of
DECS is the separation between specification of service composition and its enactment. A DECS
service specification can be deployed either for centralised or decentralised coordination, depending
upon inter-organisational requirements. A prototype implementation of DECS has been performed
using J2EE middleware. The paper describes the DECS task model for specifying service
composition and the middleware services that have been implemented in J2EE for coordinating
service execution.

1. Introduction

It is becoming increasingly common for a Web service to make use of Web services
offered by different organisations. We term such an inter-organisational service a
"Composite Web Services" (CSs). There is much research interest in developing high-
level tools for CS creation and management, including service specification languages
and run time environments for coordinating the execution of (enactment of) constituent
services. This paper presents the design and implementation of DECS: a workflow
management system for Distributed Enactment of Composite Services. There are
several features DECS that make it novel and distinct from existing workflow
management systems for Web service enactment.

(i) Flexible Coordination: workflow management systems for Web service enactment
specify the composition of a CS as a business process. Such a specification should be
sufficiently abstract, uncluttered with specific details of enactment. Specifying the
enactment of the business process is a concrete operation which requires further
information that is critically dependent on organisational issues. For example, the
organisations involved in a CS may have a peer-to-peer business relationship, in which
case, a decentralised enactment seems a natural choice, with each organisation
responsible for its part of the process. Whereas in a hierarchic relationship, a centralised
enactment may well be deemed more appropriate. DECS supports the separation
between the specification of service composition and its enactment, enabling the
organisations deploying the service to decide how they wish to coordinate it, rather than
the designer of the business process.

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

D7: Composition Language 23

DECS provides the option of both centralised coordination as shown in Figure 1 and
decentralised coordination, as shown in Figure 2. Should the coordination of the service
be spread across multiple servers as in Figure 2 a higher level of fault tolerance is
provided. In such cases, each server makes the invocations of the constituent web
services for its part of the CS, and communicates via a coordination protocol with its
peers to orchestrate the overall execution. Should a coordinating server fail or leave, it is
possible to move the CSs which that server was coordinating to another server. The cost
of doing so is proportionate to the number of CSs being coordinated and the complexity
of those CSs.

Figure 1 Centralised Coordination of a Composite Service

Figure 2 Decentralised Coordination of a Composite Service

(ii) Support for reconfiguration: It is expected that the execution of a CS could take a
long time to complete, of the order of days or weeks, and may contain long periods of
inactivity often due to the constituent applications requiring user inputs. It should be
possible therefore to reconfigure a CS dynamically because, for example, services may
be moved, machines may fail or user’s requirements may change. DECS provides basic
system support for reconfiguration (see section 2).
(iii) Support for preserving organisational Autonomy: A further advantage of
distributed coordination is that it enables organisations to collaborate whilst maintaining
autonomy. When an inter-organisation business process is created, it can be deployed
such that each organisation coordinates the parts which they are responsible for and
which act upon their internal data. Each organisation is aware of the data relating to

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

D7: Composition Language 24

those tasks which it is coordinating, and also certain pieces of data which they have
requested from the other organisations.

The remainder of this paper is structured as follows: section 2 gives an overview of the
system; section 3 describes the task model of DECS; in section 4 we describe the
system architecture and its implementation; section 5 we discuss patterns for
distributing coordination; section 6 describes related work, finally section 7 concludes
the paper.

2. System Overview

We discuss how our system has been designed to meet the application requirements
implied above, namely: scalability, dependability, interoperability, dynamic
reconfiguration and flexible task composition. The design of the system has been
influenced by our earlier work on the OPENflow distributed workflow management
system [1,2].
− Scalability: Once a composite service is deployed, there is no reliance on any

centralised service which could limit scalability. The decoupling of the business
process definition from the deployment aids scalability too – it is possible to
reconfigure the business process at run-time if more resources are needed.

− Flexible Task Composition: The system supports a simple yet powerful task model
(see section 3). This allows the composition of complex services from simple services
located both on the local machine and remote web services. A task can perform
application specific input selection (e.g. obtain input from one of several sources) and
terminate in one of several outcomes.

− Dependability: Dependability is implemented at two levels in DECS: application
level and system level. Due to the flexible task composition model mentioned above
it is possible to specify different tasks and processes to handle a variety of
exceptional circumstances, for instance, compensating tasks, alternative tasks etc. At
the system level, DECS makes use of the facilities provided by modern component
middleware (J2EE) to ensure that all information relating to the composite service: its
structure, data and state are persistent. All interactions between different modules of
DECS make use of transactions to ensure that the data remains consistent and tasks
do not interfere with each other. If a coordinating node fails mid process, it is possible
to recreate the state of the CS and continue processing from where the failure
occurred. This is discussed further in Section 4.6.

− Interoperability: The system has been designed to run in any J2EE compliant
application server, thereby supporting system level interoperability. As DECS can
invoke web services with arbitrary interfaces, application level interoperability is
provided.

− Dynamic reconfiguration: The task model referred to earlier is expressive enough to
represent dependencies (dataflow and notification) between tasks. The execution
environment exposes low level operations for making changes to the structure of the
CS by altering the tasks and the dependencies between them. We are currently
working on making this dynamic reconfiguration support transactional to ensure that
changes are carried out in a consistent manner despite concurrent reconfigurations
and machine failures. This work is being done along the lines of our earlier
implementation [2].

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

D7: Composition Language 25

3. Task Model

DECS makes use of a flexible task model to describe the structure of Composite
Services. The schema for such a task model must be expressive enough to allow
arbitrary CSs to be defined. Our schema is defined in terms of tasks, temporal
dependencies and data dependencies. A task represents an application specific unit of
work that requires specified input data and produces specified output data and
corresponds to an invocation of a web service. A task instance is modelled as receiving
one input message, and sending multiple output messages. The web service invoked is
treated as a black box with the input and output data specified by the WSDL document
associated with the service [3].
A temporal dependency represents the situation where a down-stream task cannot start
until an up-stream task has terminated in a particular state. For example, a goods
dispatch task should not be invoked until a payment-capture task has completed
successfully. A data dependency indicates that a down-stream task requires input data
from the up-stream task. Each data dependency implicitly has a temporal dependency
associated with it. For example, a dispatch task requires shipping-address which is part
of the output from order task. Implicitly this is not available until the order task has
completed [1].

Some of the salient points of the task model which aid flexible composition of CSs are
presented below:
− Alternative input sources: Any part of the input data can be acquired from more than

one source. This enables the introduction of redundant data sources providing
application level fault tolerance. The input data for a task is described at the
granularity level of wsdl:part. Support for finer granularity data than wsdl:part is
described in Section 7.

− Alternative outputs: A task can terminate in one of several states producing distinct
outcomes. In terms of WSDL, one of these states will correspond to an "output" and
all others to a "fault". This allows different down-stream tasks to be executed
depending on the outcome of an up-stream task. For example, compensation in the
event of a fault.

− Compound Tasks: A task can be composed from other tasks. The composed tasks
themselves can be simple tasks or compound tasks. This is the principle way of
providing abstraction.

− Genesis tasks: A genesis task represents a placeholder for a task structure and is used
for on-demand instantiation. This allows the system to only instantiate the parts of a
complex task which are necessary, and also allows execution of repetitive tasks.

Each input and output message can contain several parts, each representing a piece of
data which can be requested by other tasks. Task t2 in Figure 3 has one input message
containing two parts, namely i1 and i2. There are two output messages for task t2, O1 and
O2, each containing one part, o1 and o2 respectively. A task begins its life in the wait
state, awaiting its input data to be complete. When the input message is complete (i.e.,
all the data dependency and temporal dependencies are satisfied) the task enters the
ready state. If alternative inputs become available simultaneously the one with the
highest priority is used. Note that the source of an input part can be from an output
message (e.g. d1), or an input message (e.g. d2), the latter represents the case when an
input is consumed by more than one task. Temporal dependencies are depicted as a
dotted line, for example n1 and data dependencies are shown as solid lines.

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

D7: Composition Language 26

A compound task such as t1 can contain multiple output messages, with each part
having several possible sources. The task will terminate when one output message is
complete. If multiple output messages become available simultaneously, the one with
the highest priority will be chosen.
In section 6 on related work, we compare our task model with the recent proposal for
Web service enactment, BPEL [4].

Figure 3 A Compound Process

4. System Design and Implementation

The DECS system has been designed and implemented using J2EE middleware. The
current version has been tested to run within the JBoss application server [5].

4.1. Overall structure
The structure of the system is shown in Figure 4. The figure is intended to show how a
client’s request to execute CS enters the Process Initiator; an instance of the process
definition is taken from the Process Definition Repository (PDR) and added to the
Process Instance Repository (PIR). The coordinator then uses this data to invoke the
web services which compose the CS and inform other coordinating servers of data in
which they have registered an interest. Every client request instantiates a new and
unique process definition instance. The J2EE technologies used to implement the
different modules are shown in Figure 5 which matches the structure of Figure 4.
Using the J2EE environment allows DECS to make use of the rich set of functionality
which J2EE application servers provide. For example, uniform access to persistent
storage, flexible transaction control, a unified security model. DECS utilises the Entity
Beans, Session Beans and Message Driven Beans from the J2EE architecture. An Entity
Bean represents a business object that exists in the enterprise application. The
application server controls access to Entity Beans, guaranteeing atomicity, consistency,
isolation and durability. A Session Bean provides the business logic for a J2EE
application. Clients call methods of the Session Bean to interact with the application.
Message Driven Beans provide asynchronous behaviour by acting as message listeners
for the Java Message Service (JMS). JMS facilitates the exchange of messages among
software applications over a network. The prototype of DECS is interoperable in that it
will run in any J2EE application server as no proprietary extensions have been
exploited.

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

D7: Composition Language 27

Figure 4 System Architecture

Figure 5 System Technologies

4.2 Process Initiator
The process initiator is able to dynamically deploy web service endpoints which can be
used by a client to invoke the web service which corresponds to a process. When a
composite service is deployed in the system, an endpoint is generated which allows a
client to invoke it. This enables us to achieve transparency from the client's perspective,
whereby the client may be unaware that they are invoking a web service which is
implemented as a process. This style differs from many coordination engines which
expose one interface to invoke many processes. For example, web service clients of the
CARNOT workflow engine must send a message to the “WsWorkflowSessionService"
endpoint passing the name of the process to invoke and a context. One of the problems
with this style of interaction is that there is no standard way of locating the required
service. Processes which can be invoked using the Process Initiator can be advertised
using any current advertising method, e.g. UDDI [6].
When designing a CS, one server is designated as the root controller for that CS. This is
usually the server which will coordinate the first task in the CS but this is not a
requirement. The root controller is the only server on which the Process Initiator
deploys an endpoint. When a CS is invoked by a client, an instance of the process
definition is created in the PIR based on the process definition stored in the PDR. This
contains all the data necessary to run the CS, such as the tasks involved and the inter-
task dependencies which must be satisfied. The root controller also sends a message to
the other servers coordinating the execution requesting that they create an instance of
the fragment of the process definition that they are responsible for. This is discussed
further in Section 5. The initial values received in the client request are then added to
the "root" task in the repository and those tasks whose input dependencies are satisfied
are invoked.

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

D7: Composition Language 28

4.3 Process Definition Repository (PDR)
The Process Definition Repository stores process definitions and provides a method for
instantiating an instance of a process. DECS provides tool support adding an XML
based process definition script to the PDR. This can either be a complete process
definition for centralised coordination or a partial definition if decentralised
coordination is required. The PDR is implemented as a collection of Java Entity Beans
deployed in the J2EE application server.
A process definition is represented by a schema which matches the task model
described in the previous section, in terms of tasks and dependencies. We have made
use of the concepts of a scripting language developed for a previous distributed
workflow system and adapted it to suit web services style invocations. The scripting
language was designed to express composite service composition and inter-task
dependencies of fault tolerant distributed applications whose executions could span
arbitrary large durations [7].

4.4 Process Instance Repository (PIR)
The system will instantiate a process instance based on a process definition for each
request from a client. The data related to each process instance is stored in the PIR
which is also implemented as a collection of Entity Beans The state of the process
instance is persistent and each change is made persistent, this means that coordination
of process instances can be continued after machine failure.

Creating a process instance from a process definition involves three steps:
− Create the local structure of the process instance in the PIR according to the

definition stored in the PDR.
− Instantiate the fragments of the schema which reside on remote nodes. This is

described further in Section 6.
− Insert the initial values into the process instance from the client request.

4.5 Coordinator
The coordinator in DECS orchestrates the execution of the CS across multiple nodes.
This involves checking for input availability, maintaining state of the task and
propagating the results both locally and remotely. The prototype uses Session Beans to
implement the business logic associated with coordination.
When a process definition is instantiated all the tasks are in the wait state. As input data
is added to the tasks they are checked to see if their input message is complete. Once the
input message is complete the task moves to a ready state and is put on a persistent JMS
queue to indicate that the task is invocable. At this stage, the coordinator checks to see
if there are any input dependencies or notifications on the task's input message. If local
dependencies (either data or temporal) exist, the data is propagated locally to these
tasks. If a dependency is remote, this initiates a notification of the data to the remote
coordinator. These are shown in Figure 8(iii) as d1 and n1 respectively. When
propagating data to the remote coordinator, either SOAP or Java RMI can be used.
SOAP is intended to be used as the primary communication method but Java RMI can
be used to optimise the communications if both coordinators are located on the same
network. In both cases, the local coordinator must communicate with the remote
coordinator via an RPC style call. The parameters of the notification include the unique
identifier of the process instance which is the source of the data and the data value. The
action of inserting the data part to the remote task has the side effect of checking the
task to see if it can be executed. The semantics of adding any data, local or remote, to a

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

D7: Composition Language 29

task results in the task being executed as soon as its input message is available. When
the output message of the root task is complete, the Process Initiator will create a SOAP
response and send it back to the client.

4.6 Invoker
The invoker is responsible for invoking the web services which comprise the composite
service. The invoker is implemented as Message Driven Beans in the application server.
This allows us model the asynchronous behaviour that is required to invoke the
constituent web services when their dependencies have been fulfilled.
To cope with the consequences of coordinator failure, the designer of the service is
currently able to specify one of two actions to be taken on restart for each task which
was executing when the failure occurred. These correspond to whether they wish the
constituent web services to be invoked “at most once” or “at least once”. If the designer
specifies they wish to use “at most once” semantics, transactions are not used in the
invoker. The invoker is not aware that an instance of this service was executing when it
failed, so it does not attempt to re-invoke the web service request. If “at least once”
semantics are required, everything performed by the invoker is within one transaction.
This includes obtaining the input data for the web service, invoking that service,
receiving the results and adding them to the PIR. If the invoker fails at any point within
this transaction, it will be rolled back on restart. This results in the web service being
invoked with the same input data again, once the system has recovered. If an end-to-
end transaction protocol were available, it would be possible to achieve “exactly once”
execution semantics for the constituent web services of the process. This is because any
failure in the coordinator would be propagated to the constituent web services which
could rollback their execution too. On restart, the invoker would send the SOAP request
again and eventually a successful execution would occur.

5. Distribution Patterns

It is the responsibility of the designer of the service to specify how they wish to
distribute the coordination of the service. Simple CSs may be coordinated centrally, as
shown in Figure 6. This is the simplest scenario, where a central node performs all the
invocations of the services necessary to complete the CS. More complex scenarios can
be built, where the coordination of the CS is divided between multiple nodes which run
DECS. One example is given in Figure 7 where the service is divided between two
nodes. How to divide the service is an application specific decision. If we consider the
notion of a Virtual Enterprise where a set of companies wish to collaborate to provide a
service, the division of coordination could be along organisational boundaries. This
allows each organisation to coordinate their own part of the service, and possibly utilise
their private services. For example, company S wishes to sell a product and use
company D to deliver the product. The composite service could be divided such that
nodes at S coordinate the ordering of the product and payment and then the nodes at D
coordinate scheduling of the delivery of the product. A division such as this has some
advantages: firstly, S can integrate the order with their own procurement process
allowing re-ordering of stock if necessary and D can integrate with their private delivery
scheduling services; secondly, data security is higher as only the minimum amount of
data is passed across from one organisation to the other to allow the CS to continue its
execution.

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

D7: Composition Language 30

Figure 6 Centralised Coordination

The system aims to give each node the minimum information necessary to coordinate
the execution of that part of the CS. Each node only stores the data about the tasks
which it is coordinating, the internal dependencies which must be satisfied and the
external notifications which must be sent and received. The node is not aware of what
the other nodes are doing, or what tasks they are coordinating. This is intended to
provide autonomy; it makes it attractive to businesses that do not wish to disclose all of
their internals but do wish to integrate their business processes with a trading partner.

Figure 7 Decentralised Coordination

Figure 8 shows an example of how a very simplistic CS, A could be divided to run over
three servers, X, Y and Z. Figure 8(i) shows the overall CS with figures 8(ii) to 8(iv)
showing the three server’s views of the service. Server X is delegated as the controller
of the CS so it is this server which exposes an endpoint allowing the service to be
invoked. When a client request is received at X for service A, the first task to be
executed will be B. When B completes, there are no dependent tasks at server X, but
there is a notification request for the results to be sent to Y. When Y receives the results
of B via a notification, task C is executed (by Y) and on completion the results sent via
a notification to Z. As there is also a dependency for task E at Y, the data is propagated
locally to task E’s input message. As the input message for task E is not yet complete,
the task is not invoker. At server Z, task D's input message is complete by receiving the
notification from Y so task D is executed. A notification is sent from Z to Y on
completion of D which causes the input message of task E to be complete and thus task
E fired. Completion of task E causes a notification to be sent to X with the results which
are used as input for task F. On completion of task F, the output message for the
compound task A is complete, so the result is sent to the client.

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

D7: Composition Language 31

Figure 8 Division of a CS

6. Related Work

There are several industry led efforts aimed at developing (often competing!) standards
for specifying, composing and coordinating the execution of CSs. The specifications are
still evolving and often ill defined [8]. We compare our task model with a recently
proposed Web service execution language standard. The aim of Business Process
Execution Language for Web Services (BPEL) [4] is to provide a standard for
specifying business process behaviour and business process interactions, for
applications composed from Web services. We are going to focus on a comparison of
the approach taken by BPEL for specifying business process behaviour and that taken
by DECS.
Like DECS the BPEL process model allows business partners interact through peer-
level conversations, using both synchronous and asynchronous messages. These
conversations are carried out between the partners using specified sets of Web services.
BPEL has been designed to allow the coordination of distributed web services in a
centralised manner. The coordination itself was not designed to be distributed. The
coordination model is tailored towards implementations that have a centralised state
upon which a rich set of activities can act. The result is that providing a decentralised
enactment engine is difficult especially if the intention is to deploy the workflow in a
wide area network. In comparison, the DECS task model was designed such that each
task holds a small amount of state and there is a minimal set of services which are able
to act on this state. This results in a model which is easier to distribute as each task
encapsulates its own state and it is easier to migrate task coordination to another node.
BPEL relies on specifying a large set of explicit control flow activities such as forking,
joining and conditionals. Conversely, control flow in DECS is implicit and specified
through dependencies. These constructs have been found to be sufficient to specify
complex processes. Another consequence of BPEL having such an extensive set of
features which can be combined to specify a process is that the resulting process cannot
be easily analyzed to verify such properties as eventual termination. The DECS model
is much simpler and amenable to analysis, allowing both temporal and correctness
properties to be checked [9].
There are a number of systems available which coordinate the orchestration of
composite services produced both in the academic community and in industry. Some of
these are discussed below and briefly compared and contrasted to DECS.

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

D7: Composition Language 32

Collaxa [10] is well-known product that can enact composite services specified in
BPEL. It is a centralised coordination engine; this is inevitable, given the observations
on BPEL above. As such, it cannot offer the same level of flexibility in deployment
scenarios, dependability and scalability that DECS intends to provide.
Both eFlow [11] and BioOpera [12] explore the declarative composition of services but
concentrate on a centralised orchestration model. Successful efforts have been made in
eFlow to allow dynamic refactoring of services although this is simplified due to a
central, global view being available.
DECS has been designed to run in a J2EE environment to allow portability and ease of
integration into existing enterprise applications. DySCo [13] offers many similar
features to DECS, such as decentralised coordination but portability has not been
addressed to the same level: it is not designed to run in standard middleware such as
J2EE. Conversely, CARNOT [14] offers portability through a J2EE implementation, but
does not support distributed orchestration of composite services.
Another approach which has been explored is that of SELF-SERV [15], based on a
declarative state-chart oriented language. It also includes a peer-to-peer coordination
model and provides support for equivalent services through the use of service
communities. It comes closest to DECS in terms of design aims and functionality.

7. Concluding Remarks

We have presented the design and implementation of DECS: a workflow management
system for Distributed Enactment of Composite Services. A novel feature of DECS is
the separation between specification of service composition and its enactment. A DECS
service specification can be deployed either for centralised or decentralised
coordination, depending upon inter-organisational requirements. A prototype
implementation of DECS has been performed using J2EE middleware.
A suite of common services is being developed as part of the DECS. Such services
include:
− User input service: it is likely that some CSs will require input from users at different

parts of the execution. For this reason we are developing a servlet based user interface
which will allow users to input parameters to be used in the execution. The data
entered may be used to determine the consequent flow of execution or to provide
advanced error recovery.

− Send and Receive services: In order to allow asynchronous communications services
will be developed which will send or receive a message. Tasks which utilise these
services can be added to any CS, thus potentially providing a fully asynchronous CS.
We envisage more web services becoming available which require message based
communications rather than the RPC style services which are common at present.
Such document exchange web services are more versatile and allow easier integration
of business processes. However, with the introduction of this style of interaction
problems are introduced such as message correlation and temporal issues. These will
be investigated further.

− Administrative Services: services will be provided which allow a user (with
appropriate permissions) to deploy, remove and dynamically reconfigure process
definitions. Care must be taken when refactoring a service which is distributed across
multiple nodes to ensure that deadlock is prevented. This could occur in cases where
tasks are removed upon which a remote task is awaiting a notification. The service
will provide mechanisms to ensure that this situation does not occur.

ADAPT: Middleware Technologies for Adaptive and Composable Distributed Components IST-2001-37126

D7: Composition Language 33

− Transformation of complex types: At present, the system is able to manipulate the
flow of data at the granularity of WSDL parts. However, if a complex type is defined
in WSDL the system treats this as a black box and cannot address internal fields. We
see this as a deficiency in the system so aim to provide a service which is able to
transform complex types so that they conform to another schema. This is likely to be
done using XSLT, with the designer of the CS providing a style sheet describing the
transformation required. An example where this would be useful would be extracting
the invoice-number from an invoice type that was returned from the order service and
use it as the input to another service.

Acknowledgements

Discussions with Gustavo Alonso clarified our ideas. This work is part-funded by the UK EPSRC under
grant GR/N35953/01: “Information Co-ordination and Sharing in Virtual Environments”; by the
European Union under Project IST-2001-37126: “ADAPT (Middleware Technologies for Adaptive and
Composable Distributed Components”; and by the UK DTI e-Science programme under project
“GridMist”.
References

[1] S. M. Wheater, S. K. Shrivastava and F. Ranno “A CORBA Compliant Transactional Workflow System for

Internet Applications”, Proc. Of IFIP Intl. Conference on Distributed Systems Platforms and Open Distributed
Processing, Middleware 98, (N. Davies, K. Raymond, J. Seitz, eds.), Springer-Verlag, London, 1998, ISBN 1-
85233-088-0, pp. 3-18.

[2] J. J. Halliday, S. K. Shrivastava and S. M. Wheater, “Flexible Workflow Management in the OPENflow system”,
Proc. of 5th IEEE/OMG International Enterprise Distributed Object Computing Conference (EDOC 2001),
September 2001, Seattle, pp. 82-92.

[3] Web Services Description Language (WSDL) 1.1.http://www.w3.org/TR/wsdl.html as viewed July 2003
[4] Business Process Execution Language for Web Services (BPEL4WS) version 1.1.

http://www.w3.org/TR/2002/NOTE-wscl10-20020314/ as viewed July 2003
[5] JBoss application server: www.jboss.org
[6] UDDI Specification, OASIS http://uddi.org/
[7] Ranno, F., Shrivastava, S.K., and Wheater, S.M., “A Language for Specifying the Composition of Reliable

Distributed Applications”, 18th IEEE Intl. Conf. on Distributed Computing Systems, ICDCS’98, Amsterdam,
May 1998, pp. 534-543.

[8] W.M.P. van der Aalst, “Don’t go with the flow: Web services composition standards exposed”, IEEE Intelligent
Systems, Jan/Feb 2003.

[9] C. Karamanolis, D. Giannakopoulou, J. Magee and S.M. Wheater, “Model Checking of Workflow Schemas”,
Proc. of 4th IEEE/OMG International Enterprise Distributed Object Computing Conference (EDOC 2000),
September 2000, Makuhari, Japan.

[10] Collaxa: BPEL Orchestration Engine. http://www.collaxa.com as viewed July 2003
[11] Casati, F., Ilnicki, S., Jin, L., Shan, M., “An Open, Flexible, and Configurable System for E-Service

Composition”, Second International Workshop on Advance Issues of E-Commerce and Web-Based Information
Systems. 2000. Milpitas, California.

[12] Bausch, W., Pautasso, C., Schaeppi, R., and Alonso, G, “BioOpera: Cluster-aware Computting”, 4th IEEE
International Conference on Cluster Computing. Chicago, USA.

[13] Piccinelli, G., Finkelstein, A., Williams, S.L., “Service-Oriented Workflows: The DySCO Framework”,
Proceedings of Euromicro Conference, Antalya, Turkey, 2003

[14] CARNOT Workflow Engine. http://www.carnot.ag/en/ as viewed July 2003
[15] Benatallah, B., Sheng, Q.Z., and Dumas, M., “The Self-Serv Environment for Web Services Composition”,

IEEE Internet Computing, 2003. 7(1): p. 40-48.

