
Eager Replication for Stateful J2EE Servers

Huaigu Wu1, Bettina Kemme1, and Vance Maverick2

1 McGill University, Montreal, Canada
2 Universitá di Bologna, Bologna, Italy

Abstract. Replication has been widely used in J2EE servers for relia-
bility and scalability. There are two properties which are important for a
stateful J2EE application server. Firstly, the state of the server and the
state of the backend databases should always be consistent. Secondly,
each request from a client should be executed exactly once. In this pa-
per, we propose a replication algorithm that provides both properties.
We use passive replication where a primary server executes a request,
and all state changed within the application server by this request is
sent to the backup replicas at the end of the execution. An agreement
protocol guarantees the consistency between the state of all replicas and
the database. A client side communication stub automatically resubmits
requests in case of failures, and unnecessary resubmissions are detected
by the server replicas. We have implemented the algorithm and inte-
grated it into the JBoss application server. A performance study using
the ECPerf benchmark shows the feasibility of our approach.

Keywords: stateful J2EE servers, transactions, eager replication, state con-
sistency, exactly-once-execution

1 Introduction and Motivation

In recent years, the J2EE architecture has become popular for web-based appli-
cations and web services, providing services to manage transactions, persistence,
security, and object life-cycles. In such architecture, clients are thin (e.g., web
browsers). The front-end is a web server providing the presentation logic, the
application server implements the business logic, and the database server man-
ages persistent data. Web and application servers can also maintain data. This
data, although non-persistent, can exist across several client requests. A typical
example is session information. We say that such servers are stateful.

Important requirements for web-based applications are fault tolerance and
high availability. Replication is an essential technique to achieve these goals.
Typically, replication means that several instances of a server are started. If one
instance crashes, the others can continue to work. The different tiers of the multi-
tier architecture need different replication strategies. In this paper we examine
the particular design problems of replicated J2EE application servers in detail.

The main challenge is to combine transactions, as supported by J2EE, with
replication. In J2EE, most of the execution is performed within the boundaries

of a transaction which can change the state of both the stateful application
server and the persistent database. An important requirement in this context
is state consistency. If a transaction commits, both the state of the application
server and the database should be changed accordingly. If it aborts, none of the
changes should remain. Database systems provide efficient abort mechanisms.
Within J2EE, application programmers can specify a compensation method for
each business method that will be called by the server in case of an abort, undoing
the state changes performed within the application server. Another property of
J2EE is at-most-once execution guarantee. If a client sends a request and receives
a response, the request is executed exactly once. If the client does not receive a
response, it does not know whether the operation has completed or not.

If we now replicate application servers for fault-tolerance, we have to keep
transactions in mind. In particular, we want our replication algorithm to have
two important properties. (i) State consistency must be maintained. That is, if
a transaction commits at the database, each available replica of the application
server has the state changes performed by this transaction. If the transaction
aborts at the database, all available replicas know about the abort and are able
to return to the previous state. (ii) The system should provide exactly-once
transactions, i.e., as long as the client does not crash, a transaction is executed
exactly once (if the client crashes the semantics should be at-most-once). That
is, even if a replica crashes during the execution of a transaction, the others will
continue and terminate the transaction as if no crash had happened.

In this paper, we propose a simple but effective and efficient replication algo-
rithm providing state consistency and exactly-once transactions for application
servers following the J2EE specification. The approach uses passive replication,
where within a client session one server replica is the primary for this client while
the others are backups. Only the primary executes the requests. Before a trans-
action commits, the state changes within the application server are multicast
to the backups. State consistency is guaranteed by a special agreement protocol
using a marker mechanism similar to [11]. It differs from traditional agreement
protocols like 2-phase-commit since it has a highly reduced logging cost, does
not require all participants to have executed the request before terminating, and
relies on efficient and reliable group communication primitives. If the primary
fails before the client disconnects, a backup takes over the client session. Exactly-
once semantic is provided by a special client stub that automatically resends an
outstanding request to the new primary if it suspects the old primary to have
failed. Resubmissions of successfully executed requests are detected and lead to
a return of the result without reexecution. We follow similar mechanisms as ex-
ploited in [5]. While the individual mechanisms used have already been proposed
before, we are not aware of any solution that combines all, and applies them to
the J2EE environment. We have implemented and integrated our approach into
JBoss [13], an open-source J2EE compliant application server. Extensive perfor-
mance evaluations show that the induced overhead is acceptable and compares
favorably with that of other fault-tolerant solutions (e.g., JBoss’s own replication
solution [14], or Eternal, a fault-tolerance framework for CORBA [19, 20]).

Container

Transaction Manager

Client
 Data

RMI Request r

i

Application server

EJB

EJB

EJB

Transaction t
 i

r

i

Fig. 1. Typical Execution Flow of a J2EE server

The rest of the paper is organized as follows. Section 2 introduces some back-
ground and assumptions. Section 3 presents the replication algorithm. Section 4
describes the implementation. Section 5 provides a performance evaluation. Sec-
tion 6 discusses related works. Finally, Section 7 concludes the paper.

2 Background, Model, and Assumptions

We assume that the nodes running application servers can fail by crashing (no
byzantine failures). We assume reliable, asynchronous communication and no
network partitions (which are briefly discussed in Section 7). Furthermore, we as-
sume both clients and database do not crash and the connection to the database
is reliable. Client failures are easy to handle. Kistijantoro et al. [17] present how
databases can be replicated to handle database crashes, and how this can be in-
tegrated into a J2EE application server. Other database replication mechanisms
have been proposed in recent years [16, 15, 1, 8]. We are currently extending our
system to work with the replicated database system presented in [15].

2.1 J2EE application server

Basic architecture In a J2EE application server [23], the business logic is im-
plemented using special Java objects called Enterprise JavaBeans (EJB). EJBs
are also, in a more general way, referred to as components. We distinguish two
categories: session beans (SB) and entity bean (EB)3. A session bean is a non-
persistent object that represents the actions associated with a caller session.
There are two subtypes. Stateless session beans (SLSB) do not maintain any in-
ternal state across method calls. Stateful session beans (SFSB) maintain internal
state for the lifetime of a caller session. In contrast, an entity bean is an object
that represents persistent data in persistent storage (mostly database system).

A J2EE server provides a set of services, including transaction, persistence,
and JDBC services. Business logic can be executed within the context of transac-
tions. Transactions can be bean managed (developers explicitly set begin/commit/
abort statements) or container managed. For container managed transactions,
the simplest way is that the container automatically creates one transaction per
client request. That is, it demarcates a client request with the corresponding
transaction statements as shown in Figure 1. When a client request enters the

3 Message beans are a third kind of EJBs. They are outside the scope of this paper.

server, the container intercepts it, and sends a begin request to the transaction
manager before the original request is forwarded to the destination EJB. If the
EJB creates sub-requests to other EJBs their execution will run within the same
transaction. When execution finishes just before the response is returned to the
client, the container sends a commit request to the transaction manager. Any
changed state within an EB will be written back to the database. The state of
SFSB remains volatile. J2EE provides concurrency control for EBs to avoid con-
current transactions to access the same bean. If a transaction accesses more than
one database, the transaction manager will trigger a 2-phase-commit protocol.

Assumptions In regard to the application server, this paper makes a couple
of assumptions. (i) We assume both clients and EJBs (except of SLSB) to be
single-threaded with blocking requests (the caller of an EJB is blocked until it
receives a reply). This is a typical programming model, and hence, we believe
it is not a severe restriction. Consequently, SFSBs do not need any concurrency
control since they are associated with a single client with at most one outstanding
request. (ii) We assume that the execution of a client request spans exactly
one transaction. This is the simplest and most popular model used in practice.
More complicated models often already violate correctness in centralized systems
without failure, making reasoning about correctness in a replicated environment
difficult. We will discuss other models briefly in Section 7. (iii) We assume that
a regular J2EE server (without replication) correctly handles state consistency
and at-most-once execution in the failure-free case4. (iv) For space reasons, we
do not discuss the case where a transaction accesses more than one database.

Furthermore, we rely on the following, standard behavior of J2EE application
servers and database systems. (v) If the J2EE server crashes, the J2EE server’s
state and its connections to the database will be lost, and the database aborts all
active transactions. That is, the database contains the changes of all committed
transactions but no changes of aborted transactions or transactions active at the
time of the crash. (vi) We say that if a request is correctly executed, its response
is a positive response. This includes an abort exception if a transaction does not
succeed (e.g., due to application semantics) but no machine crashes. If a request
fails due to a server crash, the response will be an appropriate exception, referred
to as negative response. J2EE guarantees that the client will eventually receive
either a positive or negative response (unless the client fails).

2.2 Group communication

We have chosen to use a group communication system (GCS) [10] as the com-
munication channel. In a GCS, a group consists of a set of members. In our
case the application server replicas are the members. A member can multicast
a message to all group members (including itself) or send point-to-point mes-
sages. Messages are guaranteed to be delivered if no failures occur, otherwise

4 The J2EE specification defines the transaction synchronization interface enabling
programmers to provide rollback methods, and we assume that they are in place.

at-most-once. Different multicast protocols provide different ordering and reli-
ability properties. Reliable delivery guarantees that when a member receives a
message and does not fail for sufficiently long time then all members receive the
message unless they fail. Uniform-reliable delivery is stronger in the sense that
if any member receives a message (even if it fails immediately afterwards) all
members receive the message unless they fail. In our context, we are interested
in FIFO ordered messages (messages of the same sender are received in sending
order), and in totally ordered messages (if two members receive messages m and
m′, they both receive them in the same order). GCS also provides group member-
ship service, maintaining a view of the currently connected members. Whenever
the view configuration changes, the GCS informs all member applications by
delivering a view change message with the new view. The typical property for
group membership is virtual synchrony: If members p and q receive both first
view V and then V ′, they receive the same set of messages while members of V .
The GCS provides explicit join and leave primitives, and automatically removes
crashed members from the view using a failure detection mechanism. Due to the
asynchrony of the network, the GCS might exclude a correct member. In this
case, we assume that the affected application server replica shuts down itself and
attempts to rejoin the group.

3 Replication Algorithm

Replication mechanisms can be categorized by three parameters. (i) Replication
can be either active or passive. In an active scheme, a request is sent to and
executed at all replicas. The client receives a response as long as one replica is
available (duplicate suppression must be in place). In passive replication, only the
primary replica executes the request, and propagates updated state to the backup
replicas. If the primary fails, failover takes place, and one of the backups becomes
the new primary. Active replication requires deterministic behavior, and induces
heavy load, since all replicas have to execute all requests. Passive replication
allows for non-determinism. Although primarily designed for fault-tolerance, it
has some potential for scalability, since applying changes sent from the primary is
usually less time consuming than executing the requests themselves. The spared
resources can be used to perform other tasks. For instance, each replica could be
primary for a subset of requests, and backup for the others. On the negative
site, passive replication requires complex state propagation and failover. (ii)
The primary can propagate state to the backups in different ways. Using cold
propagation, the primary stores the state information on persistent storage which
can be accessed at failover by the new primary. In this case, the new primary can
actually be initiated only when needed after a crash. Using warm propagation,
the primary sends the state to the backups directly, e.g., via messages. This
alleviates the load on the database but introduces message overhead. Backup
instances must exist but failover is usually faster than in case of cold propagation.
(iii) The propagation time defines when state propagation takes place. Using
eager propagation the state is propagated some time before the response is

returned to the user, in lazy propagation, only some time after. Eager replication
increases user response time but can guarantee consistency. Lazy replication
provides fast response but consistency might be lost if the primary crashes after
a response is returned but before state propagation.

Our replication algorithm uses passive replication to allow non-deterministic
execution, and to avoid redundant computation. For simplicity, we only present a
system with one primary site5. For EBs, we choose cold replication since changes
are always written to the database at commit time by default. SFSBs use warm
replication to achieve faster failover, and alleviate the load on the database. Since
our main goal is state consistency, we use eager replication. In order to achieve
exactly-once, requests are automatically resent upon a negative response. At the
servers, duplicate execution is avoided by keeping track of requests and their re-
sponses. In order to guarantee state consistency and keep message overhead low,
the primary sends all changes performed by a transaction on SFSBs in a single
message to the backups before it commits the database transaction. Addition-
ally, the primary enters a marker into the database as part of the transaction.
This is necessary since the primary might crash after sending the message but
before database commit. In case of failover after the primary crashes, the new
primary can determine for each state change message it received before the crash
whether the corresponding transaction has committed at the database by check-
ing whether its marker exists in the database or not, and then act accordingly.

In the following we describe the algorithm in more detail by splitting it into
five parts. One at the client, one at the primary and one at the backup during
normal processing, one at the new primary at time of failover when the old
primary crashes, and one for recovery when a new replica joins the group.

3.1 Client algorithm

The client algorithm runs at the Client Replication Manager (CRM) located at
the client side. The CRM maintains a list of server replicas, and a pointer to
the current primary6. When a client submits a request, the CRM intercepts it,
generates a unique request id rid, and forwards the call to the primary (including
the rid). A positive response is returned to the client. If the response is negative,
the CRM has to find the new primary. For that purpose, we assume that each
server exports a method is primary which returns true if the server is currently
primary. Hence, the CRM goes through its server list calling is primary one by
one. As soon as one server returns true, the CRM resubmits the request using
the same rid to the new primary. If no new primary is found or after a maximum
number of retries, an exception is returned to the client.

5 We are currently extending our system to allow for several primaries, each serving
a subset of clients and being backups for others. Conceptually, this is quite easy

6 At startup, the CRM reads the server list from a file, and uses the first as primary.
After that, the primary sends new lists to the CRM whenever view changes occur.

3.2 Primary algorithm

The primary keeps two main data structures. For each active client request (i.e.,
no positive response has yet been sent to the client), it keeps an ActiveExecution
object. This object contains the request and its rid, the response if already
generated, a link to the associated transaction, and links to all EJBs that are
accessed during the execution of the request. ActiveExecution objects are kept
in a hash table AE for fast retrieval. Furthermore, for each fully executed client
request where a response has be generated, a pair (rid, response) is kept in a
hash table RR. Since an EJB can call another EJB, there are not only client
requests and responses, but also internal requests and corresponding responses.
They are not kept in RR nor in the ActiveExecution object. An internal request
does not have an rid, but is otherwise conceptually the same as a client request.

Let’s first recall the execution logic of a client request in a regular J2EE
model as depicted in Figure 1. When the container intercepts a client request,
it first calls the transaction manager (TM) to begin a new transaction, then
forwards the request to the EJB and waits for the response, then calls the TM

to commit the transaction, and finally returns the response to the client. Each
call to an EJB carries the identifier txid of the transaction that is associated with
this call. The primary algorithm extends now this basic scheme. The example of
a successful execution of a simple request is depicted in Figure 2. A replication
manager RM intercepts (i) the begin call to the TM to do some initialization, (ii)
requests to EJBs to keep track of stateful EJBs, and (iii) the commit/abort call
to the TM to complete the replication algorithm. Note that (ii) also contains
sub-requests from one EJB to another. We will now describe the replication
algorithm according to the letters indicated in Figure 2.

(A) When intercepting the begin, an ActiveExecution object aeo is created.
(B) Once the transaction has been created it is linked to the aeo object.
(C) When a request (client or internal) to a component is intercepted, the RM

first checks whether the corresponding response can already be found in RR

(client request only). If yes, the response is returned without reexecution of
the request. Otherwise, a link to the EJB is added to aeo for SFSB and EB.

(D) When the call returns and it is the response to a client request, both the rid

of the request and the response are stored in aeo.
(E) When intercepting the commit request to the TM , the state transfer is

initiated. A message committing is created containing the content of the
corresponding aeo. For each link to a SFSB within aeo the state of the
SFSB is included in the message. For EBs, only the identifiers are included
to guarantee that EBs can be initialized correctly at the backups. A flag u

is included in the message indicating whether the transaction updated the
database or not7. The committing message uses uniform-reliable delivery
(to guarantee all-or-nothing delivery) and FIFO order (to guarantee that
the backups receive state changes in correct order). If u is true, the primary

7 We determine if a transaction updates the database by intercepting and parsing SQL
statements sent to the database through JDBC.

(I)

Invoke(request, ejb, transaction)

(K)

multicast
 aborted message
 (rid, abort exception)

aborted

committed

remove aeo and store (rid, abort exception) in RR

(H)
else if
 (aborted
)

remove aeo and store (rid, response) in RR

Commit (transaction)

(E)

(D)
.
store (request.rid, response) in aeo

Begin (transaction)

response

If (u) multicast
 committed message

(F)
.
Commit (transaction)

Commit (transaction)

Begin

If (u) Insert (txid) into table
 CommittedTransaction

transaction

(B).
 link transaction to aeo

multicast
 committing message
 (aeo, u
)

(G)
if
 (committed)

response

access database if necessary

Invoke(request)

response

(C)
.
add ejb to aeo

transaction

(A).
c
reate aeo

Begin

Invoke(request, ejb)

Container
 Database

Replicated application server

Client
 RM

Primary
 Backups

TM
 RM
EJB

ActiveExecution

(J)

Fig. 2. Execution logic of the primary algorithm

additionally inserts a marker record containing the transaction id txid into
a special table CommittedTransaction within the database.

(F) When the primary receives its own committing message (guaranteeing that
all backups will receive it), the commit request is finally sent to the TM .

(G) After transaction commit and if u = true, the primary informs the backups
by sending a message committed. This message is not needed for correctness
but speeds up failover. Hence, it is only sent using reliable, FIFO delivery,
and the primary does not wait to receive the message itself. At last, aeo is
removed from AE, the rid/response pair is stored in RR, and the response
returned to the client.

(H) A transaction can abort at several places, e.g., when the TM executes the
commit request or in the middle of the execution of an EJB method. In the
first case, the client request was already completely executed, and hence,
the RM had recorded the response to this request. In the second case, the
response was not yet generated. However, in both of the above cases, the
TM generates an abort exception which must be forwarded to the client.
The RM intercepts the exception and inserts it together with the rid into
RR. An aborted message will be multicast to the backups using uniform-
reliable delivery to guarantee that the backups know about the change of
outcome before returning to the client. There exist alternative mechanisms
for abort handling but we do not discuss them for space reasons.

3.3 Backup algorithm

The backup algorithm used during normal processing is designed to put as little
load as possible on the backups in order to allow backups to perform other tasks.
In particular, it does not immediately apply all state changes. An EJB might be
changed many times but only the last state is relevant at the time of failover.

The backup uses the following data structures. Incoming messages are put
in a FIFO queue Q and processed one at a time. The backup maintains a hash
table CM containing the content of committing messages, and a hash table RR

containing rid/response pairs. Furthermore, the set ES contains the latest state
of each SFSB and the identifiers of EBs as received in committing messages. We
again show the algorithm according to events depicted in Figure 2.

(I) Upon receiving a committing message, if u = true, its content will be tem-
porarily stored in CM , else it will be accordingly stored in ES and RR.

(J) Upon receiving a committed message, the corresponding information from
CM is removed and accordingly stored in ES and RR. For each SFSB that
did not already have an entry in ES, the SFSB is initialized to guarantee
fast failover (the state, however is not set).

(K) Upon receiving an aborted message, the corresponding information from CM

is removed. Furthermore, the rid with the abort response piggybacked in the
aborted message is stored in RR. In this case, ES is not updated.

3.4 Failover algorithm

When a backup receives a view change message from the GCS, it checks whether
the current primary is still member of the view. If not, it determines whether it is
then new primary (using any deterministic mechanism). If it is the new primary,
the failover algorithm starts. During failover, calls to the is primary method
block. Once failover is completed, the method will return that this replica is now
primary. We will first present a simple but slow failover algorithm:

1. For each message content in CM (we have received the committing but no
committed message), we check whether it has committed at the database or

not. For that, we check in the CommittedTransaction table in the database
for the corresponding txid marker. If we find the marker, we store the content
accordingly in ES and RR, and initialize any new SFSBs. If there is no
marker, we discard the content of the message.

2. For all SFSBs in ES, we set the state to the state in ES. For all EBs in ES

we load the state from the database.
3. The replica switches to the primary algorithm.

We now briefly outline why the combination of primary, backup and failover
algorithms guarantees state consistency and exactly-once execution in case of
primary crash. Recall that all database transactions active at the primary when
it crashes will be automatically aborted at the database. We analyze now the
cases where the primary crashes during request execution leading to a negative
response and resubmission of the request. (i) If the primary crashes before send-
ing the committing message, the backups do not have the SFSB state changes,
and the database transaction will be aborted. This provides state consistency.
When the CRM resubmits the request to the new primary, it will be handled as a
new request. (ii) If the primary crashes after sending the committing but before
transaction commit, at failover the new primary will look for the txid marker
in the database but not find it. Hence, it knows that the transaction aborted,
and will disregard the committing message. Again, the system behaves as if the
request had never been processed. (iii) If the primary fails after transaction com-
mit but before sending the committed message, the new primary will again look
for the marker, and will find it this time. Hence, it will consider the state of the
EJBs in the committing message. Again, application server and database have a
consistent state. Upon resubmission of the request, the new primary will immedi-
ately return the result. (iv) When the primary fails after sending the committed

message, the new primary knows that the transaction committed without need
to check for the marker. (v) If the primary sends the committing message, the
transaction aborts and the primary crashes before sending the aborting message,
the new primary will check for the marker and not find it. Upon resubmission of
the request, it will be reexecuted at the new primary (possibly again leading to
abort). (vi) If the primary had not sent the committing message, the transaction
aborts but the primary crashes before sending the aborting message, the new
primary will accept the resubmission as a completely new request. (vii) Finally,
if the primary crashes after sending the aborting message, then the new primary
will return the abort response upon a resubmission of the request. In all cases,
this is the correct behavior.

Speeding up failover Setting and loading the state of all EJBs at the time
of failover can be very time consuming, and hence, might not be transparent
to the user (the CRM at the client will be blocked during failover). Therefore,
we suggest a lazy approach. We only perform the first step of above failover
algorithm, i.e., handle messages in CM for which we have not yet received the
committed message. Then, we switch to the primary algorithm. As a result,
all EJBs are initialized but their state is not up-to-date. Hence, the primary
algorithm during normal processing has to be extended slightly to work correctly
after failover. When a request is intercepted at the RM , the RM checks first
whether the EJB exists. If not, this is a new EJB and it is initialized. If the EJB
already exists, the RM checks whether the EJB has an entry in ES. If yes, its
state is set to the state found in ES (for SFSB) or loaded from the database (for
EB). Then the EJB’s entry in ES is removed. Once ES is empty, no checks have
to be performed anymore. This procedure slows down request execution shortly
after failover but makes the failover itself much faster.

3.5 Recovery algorithm

When a failed replica recovers or a new replica joins it has to first receive the
current state, and then will become a backup. Thus, one of the existing replicas,
referred to as the peer, must send its current state to the joining replica. Either
the current primary or any existing backup can serve as peer. Choosing a backup
as peer avoids extra load on the primary, and simplifies the procedure. Hence,
we currently have only implemented the case where a backup is the peer. If
there is more than one backup available, we need to choose one of them as peer.
In our algorithm, each backup who is willing to become the peer multicasts a
willing message to all replicas using uniform-reliable delivery (to guarantee all
or nothing) and total order delivery. The backup whose willing message is the
first to be delivered will become the peer.

When a backup receives the first willing message and it is the sender, it
delays the processing of any new messages coming from the primary. It generates
a recovery message containing the content of CM , RR, and ES and sends it
to the joining site using point-to-point communication. While waiting for the
recovery message, the joining replica might have already received messages from
the primary and enqueued in Q (it starts receiving messages when the GCS
delivers the view change). Once the joining site receives the recovery message,
it initializes its data structures accordingly. The recovery message might already
contain the state of some of the messages in Q. Hence, these messages must be
removed from Q before the backup algorithm can start processing messages from
Q. In order to determine which messages to remove, we timestamp all messages.

4 Implementation

We have implemented this algorithm using the ADAPT J2EE replication frame-
work [4]. As GCS we used JBora/Spread [3, 9]. The ADAPT framework is an
extension of a J2EE server, allowing replication algorithms to be plugged in. It
is currently based on the JBoss J2EE server [13]. The framework defines an API
for the interaction between the replication algorithm and the containing server
system. The replication developer codes an algorithm by implementing the API,
and deploys it by moving the classes into the server’s deployment directory.

When a component is invoked at runtime, the framework transfers control
to the replication algorithm. Through the API, the algorithm sees an abstracted
view of the component, the invocation, and the other elements of the server.
The algorithm may perform any actions, such as setting component state or
communicating with other replicas, before continuing the invocation. The main
advantage of using the ADAPT framework, rather than modifying the server
directly, is that it simplifies replication programming. The custom API insulates
the replication algorithm from the details of the server implementation. Further,
the algorithm is centralized in just a few classes, rather than scattered through-
out the server system. Figure 3 shows how the framework separates the J2EE
server from the replication algorithm implemented within the replication man-
agers. Although the framework adds overhead, our performance analysis shows

Client
 Replicated J2EE Server

client

J2EE server

at client side

RMI Stub

PrimaryJ2EE server

RMI

Skeleton

EJB

Client Replication Manager
 Replication Manager

RCS
 CH

Replication Protocol

Replication Protocol

at client side

RCS:
 Remote Componet
 Stub

CH: Component Handle

Backup J2EE server

Replication Framework

Replication Manager

Replication

 Framework

Replication

 Framework

Fig. 3. ADAPT Framework separates replication algorithm from J2EE server

that the replication tasks themselves consume significantly more time than the
use of the framework. Hence, we believe that the overhead is well worth the
modularity that this approach provides.

5 Performance Evaluation

We used three suites of experiments to evaluate our system. First, we use the
ECperf benchmark [24] to evaluate the performance on a “real” application
and compare it with JBoss’s existing replication technique. A second test suite
presents a series of micro benchmarks that show the performance for differ-
ent components and database access patterns. The third experiment evaluates
failover. All tests were run on a cluster of PCs (3.0 GHz Pentium 4 with 1 GB
of RAM) running RedHat Linux. The configuration consists of one machine em-
ulating clients, one machine running the web server (if needed), two machines
running JBoss application server 3.2.3. instances, and one machine running DB2
as our database system.

5.1 Evaluation based on ECperf benchmark

ECperf [24] emulates businesses involved in manufacturing, supply chain and
order/inventory management. The application is split into four domains: cus-
tomer, manufacturing, supplier domain, and corporate. The main configuration
variable is the transaction injection rate (IR) which refers to the rate at which
a specified subset of business transaction requests are injected into the system.

In this experiment, we evaluate the following architectures. (1) A regular,
non-replicated JBoss server as baseline for comparison. (2) The JBoss server
including the framework without the replication algorithm to evaluate the over-
head of an abstraction layer useful for reusability and platform independence. (3)
Two application server replicas using our eager replication algorithm. (4) Two
application server replicas using JBoss’s own replication solution [14], which we

0

50

100

150

200

250

300

350

400

450

1
 3
 5
 7
 9
 11
 13
 15
 17
 19

Injection Rate

R
e
s
p
o
n
s
e
 T

im
e

(m

s
)

Replicated Jboss

Clustered Jboss

Jboss+Framework

Non-Replicated Jboss

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0
 2
 4
 6
 8
 10
 12
 14
 16
 18
 20

Injection Rate

B
u
s
in

e
s
s
 O

p
e
ra

ti
o
n
s

(p

e
r

m
in

u
te

)

Replicated Jboss

Clustered Jboss

Jboss+Framework

Non-Replicated Jboss

(a) Response Time (b) Throughput

Fig. 4. ECperf Comparison

refer to as JBoss clustering. For both (3) and (4) we did not take advantage of
load balancing, and submitted all requests to one server. JBoss clustering uses
passive, warm, and eager replication. If a client request triggers execution on
several stateful components, state transfer takes place individually once execu-
tion on the component has terminated. Although eager, problems occur if state
propagation for some of the components was successful but the primary fails be-
fore committing the transaction at the database. In this case the backups have a
partially replicated state while the database transaction aborted. Hence, JBoss
clustering does not provide state consistency or exactly-once execution.

Figure 4 shows the results of the experiment measured over the steady state
phase of the run (the ramp-up and ramp-down phases are ignored). Figure 4(a)
shows the average response time for order entry transactions of the customer do-
main. At low throughput, the framework adds around 10 ms to the non-replicated
JBoss, our algorithm (indicated as Replicated JBoss) adds 25 ms while JBoss
clustering adds around 100 ms. This gives an overhead of around 25% for our
algorithm plus the framework, and 70% for JBoss clustering. The latter performs
so badly because it sends state after each method invocation while our solution
only communicates at the end of the transaction. As a comparison, Moser et. al.
[18] indicate around 15% overhead for FT-CORBA (primary-backup) compared
to non-replicated CORBA. With increasing IR, the response time in all sys-
tems increases steadily until saturation point. The gap between non-replicated
JBoss and the eager algorithm increases slightly but steadily, while it remains
nearly the same for JBoss clustering until around 11 IR beyond which it be-
comes significantly worse. More information about the saturation point can be
found in Figure 4(b). This figure uses the average business operations per minute
to represent the maximum achievable throughput when the IR increases. The
maximum in each curve shows the system shortly before saturation. Our algo-
rithm leads to saturated at an IR of 15 due to CPU overhead. JBoss clustering
saturates at 17 IR (also due to CPU) while the non-replicated JBoss saturates
at 19 IR. In this case, our DB2 server is the bottleneck although the CPU was

also already quite heavily loaded. By optimizing the DB2 configuration (we used
the default configuration of DB2 with only small adjustments), the CPU might
become the limiting resource also in this case. The reason for earlier saturation
of our approach compared JBoss clustering is higher CPU overhead (keeping
old responses to guarantee exactly-once, keeping information during transaction
execution to send all state in a single message).

In summary, we believe that our approach provides acceptable performance
considering the strong consistency guarantees that it provides. It compares fa-
vorable with JBoss’s clustering mechanism. Nevertheless, the overhead is not
negligible. We believe, however, that more “engineering” work in optimizing our
in-memory data structures could lead to further improvement. In order to better
understand where to start such optimizations, the next section presents results
on simpler applications in order to detect potential bottlenecks.

5.2 Component Analysis

In our second experiment suite, we evaluate the overhead of replication for differ-
ent components and component combinations. We consider the following cases.
Test 1: No database access takes place. Test 2: Database access (update) takes
place but no conflicts occur at the database. That is, different clients access dif-
ferent tuples. Test 3: Database access takes place and all transactions conflict.
That is all requests access the same tuple. In Test 1, a request triggers the exe-
cution of a single method of an SFSB. Test 2 and 3 have two different versions.
In the first, a request executes only on one SFSB which makes the database call.
In the second, a request calls a SFSB, which calls an EB to access the database.

The main configuration variable is the number of clients. Each client is con-
figured to submit 10 requests per second. However, since a client does not submit
a new request before it receives the response for the previous request, if the exe-
cution time is longer than 100 ms, the real injection rate is smaller than 10/sec.

Test1: No database access Figure 5 shows (a) the average response time
and (b) the throughput achievable with increasing number of clients. Response
times increase slowly for both the replicated and non-replicated system. Below
the saturation point, the replication algorithm (including the framework) has
an overhead of around 4 ms. This is very low in total numbers, but means an
overhead of around 100% for medium number of clients since response times are
generally very small. This is the worst case scenario for our algorithm since it
contains only SFSBs which all must be replicated. At 24 clients, response times
increase sharply due to CPU saturation, and the final saturation is after 33
clients. The non-replicated system does only saturate at around 66 clients again
due to CPU overhead. Since the system is CPU bound, and the non-replicated
system takes half the time to execute one request compared to the replicated
system, it can execute double as many requests before saturation.

There are two solutions to improve the results of the replicated system. The
first is to improve the implementation of the algorithm (e.g., data structures,
access paths). This, however, can only succeed to a certain point. After that,
alternative replication strategies have to be found, e.g., lazy replication.

0

5

10

15

20

25

30

35

40

45

50

1
 3
 6
 9
 12
 15
 18
 21
 24
 27
 30
 33
 36

Number of clients

R
e

s
p

o
n

s
e

 T
im

e
 (

m
s
)

Replicated Jboss

Non-Replicated Jboss

0

50

100

150

200

250

300

350

400

1
 3
 6
 9
 12
 15
 18
 21
 24
 27
 30
 33
 36

Number of clients

N
u

m
b

e
r

o
f

tr
a

n
s
a

c
ti
o

n
s
 (

p
e

r
s
e

c
o

n
d

)

Replicated Jboss

Non-Replicated Jboss

(a) Response Time (b) Throughput

Fig. 5. No database access

0

20

40

60

80

100

120

140

1
 3
 6
 9
 12
 15
 18
 21
 24
 27
 30
 33

Number of clients

R

e

s

p

o

n

s

e

T

i
m

e

(

m

s

)

Replicated Jboss (SFSB)

Non-Replicated Jboss (SFSB)

Replicated Jboss (SFSB+EB)

Non-Replicated Jboss (SFSB+EB)

0

50

100

150

200

250

1
 3
 6
 9
 12
 15
 18
 21
 24
 27
 30
 33
 36

Number of clients

N

u

m

b

e

r

o

f

t
r

a

n

s

a

c

t
i

o

n

s

(

p

e

r

s

e

c

o

n

d

)

Replicated Jboss (SFSB)

Non-Replicated Jboss (SFSB)

Replicated Jboss (SFSB+EB)

Non-Replicated Jboss (SFSB+EB)

(a) Response Time (b) Throughput

Fig. 6. Conflict-free database access

0

100

200

300

400

500

600

700

1
 3
 6
 9
 12
 15
 18
 21
 24
 27

Number of clients

R

e

s

p

o

n

s

e

T

i
m

e

(

m

s

)

Replicated Jboss (SFSB)

Non-Replicated Jboss (SFSB)

0

5

10

15

20

25

30

35

40

45

50

1
 3
 6
 9
 12
 15
 18
 21
 24
 27
 30

Number of clients

N

u

m

b

e

r

o

f

t
r

a

n

s

a

c

t
i

o

n

s

(

p

e

r

s

e

c

o

n

d

)

Replicated Jboss (SFSB)

Non-Replicated Jboss (SFSB)

(a) Response Time (b) Throughput

Fig. 7. Conflicting database access

Test 2: Conflict-free database access Figure 6 shows the results of test 2, in
which transactions access the database but concurrent transactions never con-
flict. The figure contains graphs both for the SFSB only and SFSB/EB combi-
nations. Let’s first have a look at the SFSB only case. Compared to Figure 5(a)
for no database access, response times increase more steeply, and are gener-
ally higher. This is due to the database access. When the number of clients is
smaller than 15, the overhead of the replication algorithm is stable at around
15 ms. The total time spent in the replication algorithm is higher than with no
database access (4 ms) because the marker has to be inserted into the database
(if a transaction does not update the database, no marker is inserted). In this
scenario, 15 ms only mean an overhead of 20% for medium client numbers since
transaction execution is generally long. With more than 15 clients, the time
spent in the replication algorithm increases linearly with the number of clients
and the throughput increases only very slowly. At 15 clients, the CPU overhead
is around 85%. After that, it does not increase fast because the system always
waits for operations at the database to complete. The saturation point is at 22
clients. The non-replicated server reaches saturation with 33 clients.

When database access is filtered through EBs, response times both for the
non-replicated and the replicated system are generally higher due to the EB
overhead (see, e.g., [7], for a comparison of SFSB and EB). However, the relative
performance is similar to the SFSB only case.

The conclusion is the easy observation that if the original system has high
execution times, than the overhead of the replication algorithm has not such a
big relative effect than with small execution times.

Test 3: Conflicting database access Figure 7 shows the results when all
transactions conflict at the database. We only present the SFSB only case, since
the effect of using EBs is similar to test 2. Generally, response times (Figure 7(a))
are much larger than in test 2 due to the long blocking times at the database.
They increase sharply with the number of clients for both replicated and non-
replicated case. The difference between replicated and non-replicated system is
bigger than in test 2 and also increases faster than in test 2. The reason is
that the replication algorithm generally increases the execution time for each
transaction. Assume transaction T1 holds a lock and T2 and T3 wait for the
lock. The time T1 needs longer to finish due to replication is also added to T2’s
and T3’s execution time. Additionally, the longer execution time of T2 is added
to T3’s execution time. This means, waiting times are cumulative. We can also
see that the maximum throughput (Figure 7(b)) is only around 1/4 of the one
in test 2 for both the replicated and non-replicated system due to the blocking.

As a conclusion, although the CPU is not saturated, the CPU overhead of
replication limits its performance. Although the response time increase is due to
longer waiting times at the database, it is caused by the computation overhead.

5.3 Failover

In this experiment, we evaluate the failover time, i.e., the period from the time
point the backup detects the primary’s crash to the completion of failover. We

Running Time (minutes) 30 60 120 240 600

No. entries in CM 2 3 5 2 4
failover time (ms) 88 93 116 84 102

Fig. 8. Failover time for different running time of ECPerf at 5 IR

evaluate the lazy approach as described in Section 3.4. The main factor to impact
the failover time is the number of transactions in CM since we need to query
the committedTransaction table for each of its entries.

Figure 8 shows the results of an experiment where we crashed the primary
after different running times of ECPerf with an IR of 5. It indicates the number of
entries found in CM at the time of failover and the time needed for failover. Both
remain stable over the different runs. That is, failover is independent of the time
the primary was running before the crash. Instead, the failover is impacted by
the throughput at the primary. The more transactions are running at the same
time, the more transactions might exist in CM at a given time. We conducted
a second experiment where we run ECPerf with increasing IR and crashed the
primary after 30 minutes. The failover time increased from 40 ms at 1 IR to 160
ms at 11 IR. Once the primary saturates, message propagation becomes bursty.
As a result, just before the crash, the backup might have received many messages
which must be processed first. In this case, failover time becomes much longer.

6 Related Work

Nowadays, most J2EE products provide some form of replication. We already
discussed JBoss’s clustering solution in Section 5. WebLogic [6] uses passive,
warm, and lazy replication. The primary propagates the state soon after return-
ing the response to the client to keep replicas as consistent as possible. Pramati
[22] uses passive, cold, and eager replication. State changes are immediately
written into the database. If the primary crashes in the middle of execution,
the database transaction aborts and with it the state changes of the application
server. None of the above solutions provides exactly-once semantics, and only
Pramati guarantees state consistency.

As an example of replication in CORBA, the Eternal system [19, 20] is based
on the FT CORBA architecture [21]. Eternal supports active replication and
both warm and cold passive replication. Determinism is required even for pas-
sive replication since it uses lazy propagation. The primary replicates the state
to backups periodically in form of checkpoints. Between two checkpoints, all
messages from clients and the database are logged. At failover, the new primary
first restores the state of the last checkpoint, and then replays logged requests.
Phoenix/COM+ [2] is based on .NET using passive, cold, and lazy replication.
It has similarities to the Eternal system. States are replicated periodically, and
requests between two checkpoints are logged. However, it distinguishes non-
deterministic events from deterministic events. For non-deterministic events, it
uses eager replication to avoid the problems that exists in Eternal. However, it is

unclear how to determine whether an event is non-deterministic or not. Neither
Eternal nor Phoenix/COM+ explicitly discuss state consistency.

There are also some general solutions that are not developed within the con-
text of a specific application server architecture. e-Transactions [11] offer exactly-
once semantics for stateless application servers. When a replica of an application
server executes a request, it inserts the response and a marker into the database.
If the server crashes before sending the response and the client resubmits the
request to the new primary, the new primary checks whether a marker for this
request exists in the database. If yes, the response will be retrieved and returned
without re-executing the request. X-ability [12] provides a general replication
solution for stateful servers without considering the specifics of a particular ap-
plication server architecture. Eternal, Phoenix/COM+, e-Transactions, and X-
ability are all implemented in different environments with different conditions.
In our approach, we have taken advantage of some of J2EE’s properties leading
to a different solution.

7 Conclusion and Future Work

This paper describes a replication algorithm that provides both state consistency
and exactly-once semantics for stateful J2EE application servers. The algorithm
was integrated into the JBoss application server using the ADAPT framework.
The performance evaluation shows that for a wide range of throughputs the
overhead is acceptable and comparable (e.g., FT-CORBA) or better (JBoss’s
clustering method) than existing solutions..

Our current work attempts to enhance the current system in several ways.
First, we are evaluating the impact of different failover strategies and the costs
of recovery. Second, we are looking into optimizing our algorithm to reduce the
CPU overhead. Third, we are extending the system to handle network partitions.
In such situation, a client might resubmit a request to a backup or a backup
becomes a new primary although the old primary has not failed. Finally, we are
looking into more advanced transaction models. For instance, a transaction can
span more than one request, or a request can span more than one transaction.
In the first case, failover must be able to handle transactions for which a client
has received some but not all responses. In the second case, failover must be able
to handle requests for which some but not all transactions have committed.

References

1. C. Amza, A. L. Cox, and W. Zwaenepoel. Distributed versioning: Consistent
replication for scaling back-end databases of dynamic content web sites. In Proc.
of Int. Middleware Conf., Rio de Janeiro, Brazil, 2003.

2. R. Barga, D. Lomet, and G. Weikum. Recovery guarantees for general multi-tier
applications. In Proc. of the Int. Conf. on Data Engineering (ICDE), San Jose,
California, 2002.

3. A. Bartoli, C. Calabrese, M. Prica, E. Antoniutti Di Muro, and A. Montresor.
Adaptive message packing for group communication systems. In OTM Workshop
on Reliable and Secure Middleware, Catania, Sicily, Italy, 2003.

4. A. Bartoli, V. Maverick, S. Patarin, and H. Wu. A Framework for Prototyping
J2EE Replication Algorithms. In Proc. of the Int. Symposium on Distributed Ob-
jects and Applications (DOA), Agia Napa, Cyprus, 2004.

5. A. Bartoli, M. Prica, and E. Antoniutti Di Muro. A replication framework for
program-to-program interaction across unreliable networks and its implementation
in a servlet container. Technical report, DEEI, University of Trieste, Italy, 2004.

6. BEA Systems Inc. BEA WebLogic Server, release 7.0: Programming WebLogic
Enterprise JavaBeans, September 2002.

7. E. Cecchet, J. Marguerite, and W. Zwaenepoel. Performance and scalability of
EJB applications. In Proc. of OOPSLA, Seattle, Washington, 2002.

8. E. Cecchet, J. Marguerite, and W. Zwaenepoel. Partial replication: Achieving
scalability in redundant arrays of inexpensive databases. In Proc. of Int. Conf. on
Principles of Distributed Systems, La Martinique, French West Indies, 2003.

9. Center for Networking and Distributed Systems (CNDS), Johns Hopkins Univer-
sity. The Spread toolkit. http://www.spread.org/.

10. G. V. Chockler, I. Keidar, and R. Vitenberg. Group communication specifications:
A comprehensive study. ACM Computing Surveys, 33(4), 2001.

11. S. Frølund and R. Guerraoui. A pragmatic implementation of e-transactions. In
Proc. of Symp. on Reliable Distributed Systems (SRDS), Nürnberg, Germany, 2000.

12. S. Frølund and R. Guerraoui. X-ability: a theory of replication. In Proc. of Symp.
on Principles of Distributed Computing (PODC), Portland, Oregon, USA, 2000.

13. The JBoss Group. JBoss application server. http://www.jboss.org.
14. The JBoss Group. JBoss Clustering, 2002.
15. R. Jiménez-Peris, M. Patiño-Mart́ınez, B. Kemme, and G. Alonso. Scalable

database replication middleware. In Proc. of Int. Conf. on Distributed Computing
Systems (ICDCS), Vienna, Austria, 2002.

16. B. Kemme and G. Alonso. A new approach to developing and implementing eager
database replication protocols. ACM Trans. on Database Systems, 25(3), 2000.

17. A. I. Kistijantoro, G. Morgan, S. K. Shrivastava, and M. C. Little. Component
replication in distributed systems: a case study using Enterprise Java Beans. In
Proc. of the Symp. on Reliable Distributed Systems (SRDS), Florence, Italy, 2003.

18. L. E. Moser, P. M. Melliar-Smith, and P. Narasimhan. A fault tolerance framework
for CORBA. In Proc. of the Int. Symp. on Fault-Tolerant Computing, Washington,
DC, USA, 1999.

19. P. Narasimhan, L. E. Moser, and P. M. Melliar-Smith. State synchronization and
recovery for strongly consistent replicated CORBA objects. In Proc. of the Int.
Conf. on Dependable Systems and Networks, Göteborg, Sweden, 2001.

20. P. Narasimhan, L. E. Moser, and P. M. Melliar-Smith. Strongly consistent repli-
cation and recovery of fault-tolerant CORBA applications. Journal of Computer
System Science and Engineering, 32(8), 2002.

21. Object Management Group. Fault Tolerant CORBA Specification, December 1999.
22. Pramati Technologies Private Limited. Pramati Server 3.0 Administration Guide,

2002. http://www.pramati.com.
23. SUN Microsystems Inc. JAVA 2 Platform Enterprise Edition Specification, V1.3,

October 2000.
24. SUN Microsystems Inc. ECperfTM specification, V1.1, final release, 2003.

http://java.sun.com/j2ee/ecperf.

