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Abstract can failover to another replica. The challenge is to correctly
handle requests and transactions that are active at the time of
Replication is widely used in application server products the crash. The AS replication solutions we are aware of only
to tolerate faults. An important challenge is to correctly co- consider the simple case where one request is associated
ordinate replication and transaction execution for stateful with exactly one transaction [15, 16, 14, 13, 28, 4, 3, 27]. In
application servers. Many current solutions assume that a contrast, we propose a tool that is able to handle different
single client request generates exactly one transaction atexecution patterns as described above. The system should
the server. However, it is quite common that several client provide exactly-onceexecution andtate consistencgven
requests are encapsulated within one server transaction orin the case of crashes [15, 27]. Assuming the 1-request/1-
that a single client request can initiate several server trans- transaction pattern, exactly-once means that for each sub-
actions. In this paper, we propose a replication tool that mitted client request, the server executes the corresponding
is able to handle these variations in request/transaction as- transaction exactly once. State consistency guarantees that
sociation. We have integrated our approach into the J2EE the state at AS replicas and database is always consistent.
application server JBoss. Our evaluation using the ECPerf We refine these correctness properties to be able to capture
benchmark shows a low overhead of the approach. advanced execution patterns.
Our tool is based on an existing protocol [27] which as-
sumes the simple 1-request/1-transaction pattern. It uses a
1 Introduction classical primary/backup approach [18, 21, 15, 13, 2]. One
server replica is the primary executing client requests. It
Application servers (AS) have become a prevalent build- Propagates state changes to the backup replicas whenever a
ing block in current information systems. Clients send re- transaction commits. If the primary fails, a backup replica
quests to an AS which accesses database systems to manaffls over, reconstructs the state of the old primary, and con-
persistent data. The AS runs the application programs andinues the client connections. Requests that were active at
maintains volatile data, such as session information, i.e., thethe time the primary crashed (and only those) are automat-
server isstateful Requests are executed in the context of ically restarted at the new primary. This paper extends the
transactions which provide durability for the persistent data, basic tool to support advanced execution patterns.
isolation from concurrent transactions, and atomicity. In ~ Ourgoalis to provide a practical solution with little over-
the simplest execution model, each client request execute$ead. Hence, we have developed our replication tool within
within its own individual transaction. In practice, however, the context of a concrete AS architecture, namely J2EE [26]
execution can be more complex. For instance, the clientand integrated it into the open-source AS JBoss [17]. We
can start a transaction, and then submit several requests iRelieve, however, that the principle ideas can be applied to
the context of this transaction before committing it. This Other kinds of application servers (e.g., CORBA, .NET),
is, e.g., often used when a web server (WS) is positionedand hence, keep the algorithmic description as general as
between the real (internet) client and the AS. At the other Possible. Our performance analysis shows that the approach
extreme, one client request might create several indepencompares favorably with other fault-tolerant solutions.
dent transactions in the AS. Application programmers often
chop the execution of a request into a set of small transac-2 Background
tions to avoid lock contention at the database.
AS servers are often replicated to achieve 7/24 availabil- AS architecture  We assume the application logic to
ity. If one replica crashes, the work assigned to this replica be programmed within componen&nterprise JavaBeans



(EJB) in J2EE). Components can have state. We assumechange message providing thigtual synchronyproperty:

that a component is only associated with a single client if membersp andq receive both first view” and thenl”’,
(e.g., stateful session beans (SFSB) in J2EE), or that therghey receive the same set of messages while membéfs of

is a concurrency control mechanism in place that allows atIn an asynchronous environment, the GCS might wrongly
most one transaction to be active on the component (e.g.exclude a non-crashed member. In this case, we require the
entity beans (EB) in J2EE). We assume all components toaffected replica to shut down. An alternative would have
run within the same runtime environment (called container been to apply semi-passive mechanisms [10].

in J2EE). Additionally, the server provides a set of services

like transactions and security. Figu?@ shows an J2EE ar- 3 Model

chitecture with a transaction service, and three EJBs. The \ya make the following assumptions. All communication

client makes a request to a method of an EJB which in tumjg gqynchronous and reliable (no network partitions). Indi-
can call other EJBs and/or the database before returning g4,,a components within a server do not fail but an AS only

response to the client. fails entirely by crashing (no byzantine behavior). For now,
Most AS architectures provide two ways to access ser-databases and clients do not crash. We discuss their crashes
vices. Either the components explicitly make service calls jn Section 5. Clients and components are single-threaded
or such service calls are made automatically whenever athat block when Waiting for the response of a request but
method of a component is activated. The transaction ser-execution does not need to be deterministic. For space rea-
vice is implemented by the transaction manager (TM). A sons, we only consider full state consistency. Our solutions
transaction consists of a set of operations. If a transactionfor relaxed state consistency handle transaction abort differ-
commits, all its operations succeed. The state changes irently but use similar reasoning.
the database are persistent while changes on AS compo- |n a non-replicated system without crash, we assume
nents usually remain volatile. If the transaction aborts, any each request to execute successfully, and the server to pro-

changes performed so far on the database are undone by th@de acorrect responseThis could be an abort exception if
database system. Whether the changed state on AS comp@he transaction fails, e.g., due to application semantics.

nents is undone depends on the AS architecture. In J2EE, |f 3 non-replicated server crashes before returning a cor-

changes on SFSBs are not automatically undone. How-rect response to a request, the client receivésilare ex-

ever, programmers can provide rollback methods for SFSBsception and the request is executed at-most-once. All state
which are automatically called by the J2EE server in the at the AS and the database connections are lost. We assume
abort case. We say the AS server provifidsstate consis-  the standard database behavior in this case: the database
tencyif mechanisms exist to abort changes on components,aports all active transactions except those inghepared

otherwise it provideselaxed state-consistencyf a trans-  state (in case of 2PC) which will remain active until the
action accesses more than one database, a 2-phase commijhtabase receives themmit/abortdecision.

protocol (2PC) is necessary at commit time for atomicity. Execution Patterns We classify execution patterns by the

ghte bTM flrsthgerr:dstq)repiLe rqutest to alldpart|0|pat|ng number of client requests involved in a transaction and the
atabases which return either witipeeparedmessage or number of transactions generated by a request. Irithe

their decision to abort. If all databases have successfullypattern (1-request/1-transaction), each client request initi-

ptrﬁ par_ed, thflTM ts ends?mtmgd;;:[;slon t?_ all ciatab_?_ies, ates a single transactidn and the entire request execution
otherwise (at least one aborted) rtconfirmation. The —,, ihe AS and the database is performed wiffiin

databases terminate the transaction accordingly. A first extension allows several client requests to run

Communication between AS replicas is viagtoup com- within a single transaction (see Fi¥(a)) leading to aN-
munication systeniGCS) [7]. A group member can mul- 1 pattern(N-requests/1-transaction). A client first sends a
ticast a message to all members (including itself). Send-begintransaction request, then several requests for compo-
ing a message witteliable deliveryguarantees that when a nents, and finally a&ommit/abortrequest. The client re-
member receives a message and does not fail for sufficientlyceives responses before the corresponding transaction ter-
long time then all members receive the message unless theyninates. This pattern requires the AS to export the be-
fail. Uniform-reliable deliveryis stronger: if any member  gin/commit/abort methods of the TM. It is often used when
receives a message (even if it fails immediately afterwards)a web-server (WS) runs between the real client and the AS.
all members receive the message unless they fail. Our al4n this case, the real client makes a request to a component
gorithms require all messages of the same sender to be rein the WS (e.g., a servlet) which is in turn the client for the
ceived in sending order (FIFO). The GCS automatically re- AS and makes calls to the AS. Controlling transactions from
moves crashed members from the view of currently con- outside the AS has also become important for web-services.
nected members and also provides explicit join and leave The second extension allows a client request to gener-
primitives. Upon a view change all members receive a view ate more than one transactions leading t@-Bl pattern



(1-request/N-transactions). We explain the semantics us-was interrupted by a crash. However, if the failed execution
ing the example of Fi@?(b). A client request to a compo- led to the commit of a transaction and the second, success-
nent initiates a transactidh . When the component creates ful execution follows a different execution path that would
a sub-request to another component during the executionnot include this very same transaction, then we would have
T, is suspended and a new transactionis started. The aghosttransaction that does not refer to any execution that
sub-request is executed within the contexffef WhenTy the client perceives as successful.
commits, T} resumes, and further execution again happens
within the context off} . T; might commit whileT; aborts, 4 Replication Algorithms
or vice versa. However[; always terminates beforé, .
We callT; theouterandT; theinner transaction. An outer L .
. . . . . Our replication tool uses a primary/backup approach. It

transaction might have several inner transactions, and an in- X . : 0

. . . .consists of a client algorithm (which is downloaded to the
ner transaction might be the outer transaction of another in- _. :

. L ; . client when it connects to the AS) and a server part. We
ner transaction. The 1-N pattern is widely used in practice

assume the replication tool obtains control before a request

when a long execution needs to be chopped into small trans-is sent to the TM or a component, and after the call returns.

actions in order to increase concurrency within the database We first provide an overview of the algorithm for the 1-1

[24, 20]..The programmer typlc_ally prow_des compensating pattern, and then discuss the N-1, 1-N and N-N algorithms
transactions for each transaction type in order to guaran-

. . . when only one database is accessed. For space and read-
tee that if not all transactions commit the effects of already _, .. : .
: : ability reasons we only present the solution for N-1 in algo-
committed transactions are undone.

rithmic form. We also shortly discuss how the algorithms

Finally, the two extensions can be combined tol& can be adjusted to work with more than one database.
pattern Several client requests might execute within trans-

actionT; while T} initiates several inner transactions. Fur- , 1 1.9 Algorithm Overview
thermore, the patterns above can be refined by considering
that each transaction might access only one database or sev-

eral databases. Only in the latter case 2PC is needed. Our 1-1 algorithm is from [27] which in trn had com-

bined ideas from [14, 13]. The client replication algo-

Correctness For space reasons we are not able to pro- rithm intercepts each request submitted from the client to
vide a formal correctness definition or formally prove the the server, attaches a unique id, and forwards the request to
correctness of the algorithms. Instead, we resort to a morethe current primary. Upon a failure exception, it resends the
informal reasoning. We state correctness as a set of propfequest with the same id to the new primary. This repeats
erties that have to be provided despite crashes of individ-until it receives a correct response.
ual AS replicas. From the perspective of the client, cor-  The primary executes a client request within a transac-
rectness meanexactly-once request executjdhat is, the ~ tion7. Atcommittime, it propagates all changes performed
client receives exactly one correct response for each submitby 7' on components together with the request/response pair
ted request, and no failure exception. From the perspectiveln a singlecommittingmessage (uniform-reliable delivery),
of the server we requirexactly-once transaction execution and enters the identifiérid of 7' into the database as part
andfull state consistencyThe first requires that each trans- 0f the transaction. When it receives its own committing
action commits at most once. If it does not commit, it aborts message, it commitg’, returns the response to the user,
due to application semantics or database exceptions (e.g@nd multicasts @ommittedmessage (reliable delivery). If
deadlock). The second requires that if a transacfimom- 7" aborts at some time during the execution, aorted
mits, the database has commitEend all non-crashed AS ~ message is multicast (reliable delivery) containing the re-
replicas have the state changes performe@ bl 7 aborts, ~ quest/abort response pair.
the database has abortEdand none of the AS replicas has ~ When the primary crashes, a backup becomes the new
the state changes performed By Additionally, in order ~ primary and performs failover. For a given request with
to synchronize client and server perceived correctness weassociated transactidh, the new primary might have re-
require what we caltequest / transaction matchingrhis ~ ceived before the crash (1) not yet any message, (2) the
means that each committed transaction must be result of th&ommitting message but no decision message, or the (3)
successful execution of a request or sequence of requestgommit/aborted messages. In the first case, our failure as-
namely the one that produces the correct response seen bgumptions guarantees that the database abdrteth the
the client. This requirement is motivated by the fact that the second case, the database might have committed or aborted
execution of a request might be replayed if its first execution 7. The new primary checks whethés txid was inserted

in the database. If yes, the database had comnmiitieahd

LIn J2EE, the application programmer can specify at deployment time .the new primqry applies the component changes included
that a call to a method should always generate a new transaction. in the committing message, and stores the request/response




pair. Otherwise it ignores the committing message. In case
(3), if the decision was commit, the new primary applies the
component changes of the committing message, if the deci
sion was abort, it ignores them. In any case, it stores the
request/response pair. After failover, when the new primary
receives a request from a client it checks first whether it has
recorded a corresponding request/response pair, and if yes
returns immediately the response. Otherwise it executes thg
request according to the primary algorithm.

Resubmitting requests in failure cases but avoiding
reexecution if the request was already successfully ex-
ecuted provides exactly-once execution and proper re-
guest/transaction matching. Inserting the txid into the
database allows the new primary to check wether the
database transaction committed, and apply or disregard thg
AS state accordingly, hence providing state consistency.

4.2 N-1 Algorithm

In the N-1 model the client can include several requests
within a single transaction. If the primary now crashes be-
fore a transactioff’ commits, the database abaftsbut the
client might have already received the responses for some
of the requests belonging 6. These responses now refer
to a transaction that aborted at the database due to a cras
We have implemented two approaches to address this prob
lem. TheN-1-best-efforalgorithm is fast but only provides
at-most-once execution in some cases. Nkk-orderedal-
ternative achieves better transparency at the price of highe
overhead during normal processing.

N-1-best-effort In the first approach, the main adjustments
are at the client side. The client replication algorithm keeps
all requests and corresponding responses for each transa
tion. If the primary crashes while a transaction was active,
the client algorithm replays the execution at the new pri-
mary. If it leads to the same results as the original execution,
it was successful and failover is completely transparent. If
it leads to different results, the replay was unsuccessful and
the reexecuted transaction is aborted. The real client, hav;
ing seen the old non-repeatable responses, is informed with
a failure exception, and hence transparency is lost.

Figures 1, 2, 3 show the N-1-best effort algorithRe-
guesthas an identifierrid while a Responseaptures the
response to a request. A sin@l&U objectceu at the client
replication algorithm keeps track of the execution within
the current transaction. It contains the transaction identifier
taid of typeT'ID, and all requests executed so far together
with their responses{R). The server maintains &iJ ob-
ject for each currently active transaction (one per client).
EU keeps track of transaction identifierid and the set of

void begin ()
1. while (true)

2. ceu.initialize();

3. ceu.txid = primary.begin();

4. if (3 failure Exception) return;
5. else find a new primary;

(a) transaction begin

Response invoke (Request req, Component comp)
1. Generate req.rid;

1
n)

2. while (true)
3. Response resp = primary.invoke(req, comp, ceu.txid);
4. if (3 abort Exception) throw abort Exception;
5. if ( failure Exception)
6 ceu.RRJ = {(req, comp, resg);
7 return resp;
8. else
9. while @ failure Exception)
2 10. find a new primary;

11. replay(ceu);

12. if @ replay failure)

13. ceu.initialize();

14. throw replay failure;

(b) regular request

void commit ()
1. while (true)

2. primary.commit(ceu.txid);
| 3. if (#failure Exception)
4. ceu.initialize();
5. if (3 abort Exception) throw abort Exception;
h. 6. else return;
L 7. else
8. while @ failure Exception)
9. find a new primary;
10. if (primary.iscommitted(ceu.txid))
r11. ceu.initialize();
12. return;
13. else
14. replay(ceu);
15. if @ replay failure)
| 16. ceu.initialize();
rTo17. throw replay failure;

(c) transaction commit

void replay (CEU ceu)
1. ceu.txid = primary.begin();
2. if (3 failure Exception) throw failure Exception
3. else

4. for each (oreq, ocomp, oresg)ceu.RR
5. Response nresp = primary.invoke (oreq, ocomp, ceu.txid);
6. if (3 failure exception) throw failure Exception
7 else if @ abort exception) throw replay failure
8.  else if (nresp != oresp)
9. primary.abort(ceu.txid);
10. throw replay failure;
(d) replay

Figure 1. N-1-best-effort at the client side

object depends on the type of message.
The client replication algorithm (Figure 1) intercepts be-
gin, invoke and commit requests. We ignore abort requests

components’OM P that have been accessed so far. In con- for space reasons. For simplicity, the algorithmic descrip-
trast to the 1-1 algorithm, the servers do not need to keeption assumes that the client submits requests in the correct
track of request/response pairs. Tdatent of aMessage  order (begin/invoke/invoke.../commit). An abortinduced by



application semantics or by the database (deadlock, etc.) i
considered a correct response. In this case, we expect th
client to submit a new begin transaction as next request.
Upon intercepting the begin request (Fig. 1(a)). ¢be

object is initialized and the request is forwarded to the cur-
rent primary until it is successfully executed. Upon an in-
voke request (Fig. 1(b)), the response from the primary is
captured (lines 3-7), or, if the primary crashes a replay is
initiated at the new primary (lines 9-14). Upon a commit
request (Fig. 1(c)), if no crash happens, the commit returns
to the user. If the transaction aborts because of database s¢
mantics, the response is an abort exception (lines 3-6). If 4
crash occurred before the server returns from the commit,
the transaction might have committed before the crash or it
aborted upon the crash. The client algorithm checks at the
new primary (lines 9-10). We will see later how the new
primary answers such request. If the transaction commit-
ted, the commit request returns successfully (lines 11-12).
Otherwise, the transaction is replayed at the new primary
(lines 13-17). The replay (Fig. 1(d)) starts a new transaction
and resubmits each request of the old execution (lines 1-5)
If one of these requests receives a different response tha
the original execution, the reexecuted transaction is aborted
throwing a replay failure exception to the client (lines 7-
10). Itis now up to the client to act upon this. Otherwise,

reexecution has been successful and the algorithm contin;

ues with the request that was active at the time of the crash
Note that after the reexecution the state of the new primary
(or the database) might not be exactly the same as the stat

5 TID begin ()
e 1. new EU eu;
2. eu.txid = TM.begidlransaction();
3. return eu.txid;
(a) transaction begin

Response invoke (Request req, Component comp, TID txid)
1. find eu corresponding to txid;
2. eu.COMPU = {comp};
3. return comp.invoke(req);

(b) regular request at primary

void commit (TID txid)
. find eu corresponding to txid;
. for each comg eu.COMP
set comp.state to current state of corresp. component;
. hew committing Message m1;
. ml.content {eu};
. multicast m1 by uniform reliable delivery;
. insert eu.txid into database;
. wait until receive m1,
. TM.commitTranasction(txid);
. if ( abort Exception)
new committed Message m2;
m2.content {eu.txid};
multicast m2 by reliable delivery;
else
new aborted Message m3;
m3.content {eu.txid};
17. multicast m3 by reliable delivery;
18. throw abort Exception;
(c) transaction commit

14.
15.

n
16.

Bool is.committed (TID txid)
1. if txid can be found in database return true
2. else return false;

(d) check outcome of transaction

of the old primary after the first execution, but this does not

Figure 2. N-1-best-effort at primary

really matter because only responses but not server state is
visible to the client. Throughout the algorithm additional the committing message is ignored (lines 4-7). Finally, all
AS crashes reset the algorithm to the appropriate place. necessary components are recreated (13-15). Alternatively,

The server (Figure 2) creates an object upon trans- ~ cOmponent recreation can also hapﬂmi!y after failover
action begin (Fig. 2(a)), and keeps track of each compo-dl_mng normal processing of the new primary: whenever a
nent accessed by a request (Fig. 2(b)). At commit time pl|§n_t makes arequ_est to acompon_ent we first Iook_vyhether
(Fig. 2(c)), we send the committing message including the 't 1S in COMP and if yes, remove it from COMP, initial-
final state for each accessed component, and insert the txid?€ it: and adjust the component state before performing the
into the database (lines 1-8). Then we commit the trans-corresponding operations.

action. If commit was SUCCGSSful, we send a commit mes- Reasoning about correctne¥ge have to look at the time-
sage (lines 9-13) and the commit completes. If commit is points at which the primary can crash. (1) If it crashes when
not successful due to database semantics, the primary inthe client attempts to start a transaction, the database trans-
forms the backups about the abort so that they can discarchction (if already started) aborts, and the new primary has
the committing message, and returns the exception to thenot yet done anything. The client algorithm simply restarts
client (lines 15-18). When asked by the client replication the transaction. (2) If it crashes sometime during the ex-
algorithm, theis_.committedroutine (Fig. 2(d)), checks in  ecution before the client submits the commit request, the
the database for the txid and returns the answer. database transaction aborts and the new primary does not
The backup, during normal processing, stores all re- know anything about the transaction. The client algorithm
ceived messages in a FIFO queue. Figure 3 shows theeplays the execution at the new primary. If it is success-
failover. Committing messages are processed in FIFO or-ful, execution continues with the last request submitted. In
der to track the latest state of each component (lines 2-3).this case the client perceives exactly-once execution for its
If the corresponding transaction committed, we determine requests, the server executes the corresponding transaction
which components were affected (lines 8-12). Otherwise exactly once, the state between database and new primary is



void failover () Result interceptDatabaseAccess (Request clisqptSQL sql)
1. new Eu eu, new set COMP; 1. while (RDBAT.size- 0 and clientreq.rid '= RDBAT.First().rid)

2. in order of reception process each committing message m 2. clientreq waits until timeout or natification;
3.  eu=m.content 3. if (timeout)
4. if (3 aborted message m’ with m’.content == eu.txid) 4 TOA = RDBAT;
5.  or (# committed message m’ with m’.content == eu.txid 5. RDBAT.empty();
6. and eu.txid does not exist in database) 6 notify each waiting clienteq;
7 ignore committing message 7. Result r = execute sgl in the database;
8. else// transaction committed 8. if (req.rid == RDBAT.First().rid)
9. for each compge eu.COMP 9. RDBAT.removeFirst();
10. if @ c € COMP && ¢ == comp) 10. notify each waiting clienteq;
11. c.state = comp.state 11. else
12. else COMRJ = comp; 12. if (A toa € TOA with toa.rid = req.rid) // original execution
13. for each comg COMP 13. new DBA dba;
14.  create corresponding component; 14. dba.rid = req.rid;
15. set component’s state to comp.state; 15. dba.order = counter++;
16. DBATU = {dba};
Figure 3. N-1-best-effort failover at backup 17. retumnr,

(a) database access

consistent, and client and server execution matches. If the Response invoke (Request req, Component comp, TID txid)
replay is not successful, the transaction aborts. The client is ; zzdceot’hjgefp{c’cr;%”pgto tid;
informed and exactly-once is not provided. However, state| 3" pesponse resp = comp.invoke(req)
consistency is provided, and since neither the client nor the 4. it (req is a client request)
server perceives a successful outcome, execution matcheg. 5. new setcds;
(3) If the primary crashes after the client had submitted the| - for éach dbas DBAT with dba.rid == req.rid;

. L 7 cdsu = {dba}; DBAT \ = {dba}
commit request but before receiving a response, the cases g (cds 1= 0)
are the same as those in the 1-1 algorithm: the new pri-| 9. new ordering Message m;
mary might not yet have received any message, might have 10.  m.content {(txid, cds};
received the committing but not the committed message,| 11.  multicastm by reliable delivery;

. . . 12. return eu.resp;

Or_ might have r_ecelved the commit/abort mess_age. The (b) regular request leading to multicast ordering message
failover mechanism guarantees the state consistency be
tween database and AS server by applying the state changes
of the committing message if and only if the database trans-
action has committed. The client checks at the new pri-
mary whether the transaction had committed. If it commit-
ted, no reexecution takes place. This provides exactly-once
execution at both client and server and execution match-
ing. If it did not commit, replay is initiated as in situation
(2) above. In total, this protocol provides state consistency, . .
request/transaction matching, and at-most-once execution. *°: ;2&2%3@: ascendingly according to dba.order and set courtter
AS failures are transparent in some but not all cases. NOt& (¢) handling ordering message at failover
that if the transaction aborts due to application semantics
but the primary crashes before returning the response, the
client replication algorithm will actually replay the transac- Figure 4. N-1-ordered extensions
tion. This does not violate any of the properties.

void failover ()

1. ..
2. new list RDBAT;
3. in order of reception process each ordering message m
4. if 3 committed message m’ with m’.content = m.content.txid
5 or m.content.txid exists in database
6. discard m;
7. else
8 for each dbae m.content.cds
9 RDBAT.add(dba);
10

N-1-orderedthat works for database systems that guaran-
Increasing the chances for exactly-onceReexecution  tee serializability through strict 2-phase locking. With N-1-
might not succeed if non-determinism occurs which can ordered, the reexecution of all database access is performed
happen because of database access. For example, assunmethe same order as during the original execution. Dur-
before the primary crash); reads and updates and re- ing normal processing, each database access is assigned a
turns a response to the client. Then the primary crashesunique increasing identifier. Before the response for the re-
beforeT; commits. At the new primary assume a trans- quest is returned, a message with the identifiers of all ac-
action T, reads and updates beforeT; resubmit its re-  cess triggered by the request is multicast to the backups. At
quest. Hencel's replay reads a different value ofthan the time of resubmission after the primary crashes, each re-
during the original execution. This might lead to a dif- played database access must be executed according to its
ferent response if the value of affects the response. To original order and new requests may not start until all re-
avoid such behavior, we propose an alternative algorithmsubmissions have completed. In the example above, when



T>'s request is submitted befoflg resubmits its request, it  receives as request idd.i, i.e., a concatenation of the re-
has to wait untill;'s request is reexecuted to guarantee that quest id of the outer transacti@hand a counter that keeps
Ty again reads the same data as in the original execution. track of how many inner transactiofisstarted.

Figure 4 shows how the N-1-ordered algorithm extends  The algorithm handles inner transactions in the same
the N-1-best-effort algorithm. During normal processing, way as outer transactions. At commit time of any inner or
the N-1-ordered algorithm intercepts all accesses to thegyter transaction, the request/response pair and the changed
database (Fig. 4(a)). We assume the algorithm knowscomponents are multicast as in the 1-1 algorithm. Since we
from which client request each database access is triggered;se FIFO multicast and inner transactions always terminate
For the original execution (no resubmissionPBA object  pefore their corresponding outer transaction, the messages
records the pair of the rid of the client request and a unique of an inner transaction always arrive at the backups before
increasing number which represents the order of the accesshe messages of the corresponding outer transaction. As-
A DBAT set captures alDBA objects. Before the re-  syme transactioff, triggered by client request with request
sponse for a client request is returned,aalering Mmes- g | submits a request with request idl that starts inner
sage is multicast to all backups containing all correspondingtransactior@_ When the primary crashes, there are three
DBA objects (Fig. 4(b)). Requests that do not access themain cases. (1) Botif; andT» were still active, (2) both
database do not require a multicast message. At failoverhad terminated (commit or application induced abort), or
the new primary will handle all the ordering messages re- (3) T» had terminated whil@; was active. The new pri-
ceived before the crash of the old primary (Fig. 4(c)). We mary is able to distinguish these three cases by examining
discard each ordering message for which the correspondingpe messages it has received farand 7 during normal
transaction has committed, since client requests involved i”processing and checking for transaction identifiers in the
this transaction will not be resubmitted (lines 3-6). Other- gatapase if necessary. In the first case, it will not apply any
wise, theD BA objects contained in the ordering message component changes even if it had received the committing
will be recorded in a lisRDBAT and sorted in ascending message. The client will resubmit request 1 and the new
database access order (lines 8-10). When a client requesrimary reexecutes starting witfy. All correctness prop-
is replayed at the new primary, each resulting database acerties are provided. In the second case, the new primary
cess will be intercepted (Fig. 4(a)). If the order of the re- has installed the component changes of both transactions.

played database access is not the smallest as recorded iff the client replication algorithm resubmits the request 1,
the RDBAT:, it has to wait until all database accesses with 7’5 response is immediately returned without reexecution.

smaller order have been executed (lines 1-2). A new request

(not resubmitted) has to wait unfiD BAT is empty. Only

when these conditions are fulfilled, the database access ca o VSN .
mary. If the execution is deterministi@; will submit the

be executed (line 7). In order to handle clients that do not S .
ery same request 1.1 that initiatéd on the old primary.

replay (€.g., they crashed by themselves), there is a tlmeou}éince the new primary keeps the request/response pair for

(lines 3-6) of how long a request is blocked. When the first T, the new primary immediately returns the response with
timeout is triggered, all waiting requests will be notified, ~2’ X i e )
99 greq out reexecution. With this, is executed exactly once and

and all further request will not be blocked by the ordering its execution is bart of the correct response returned to the
mechanism to guarantee termination. For instance, in above™S Execution1s p p u

example, if7; does not resubmit its request within a cer- ﬁ“?r:]' I:omever,rlrf]efecutelg: IS r;rc])ttﬁete:irn;:lslﬂﬁ)l; m|gtihtn
tain time,T3's request will execute. In case of timeout, the otmake the same request as € original execution.

RDBAT will be emptied, but the remaining B A objects Our first solution to handle this problem assumes that com-
in the RDBAT will be témporarily stored in a lisTOA pensating transactions exist. Recall that if the 1-N pattern

to avoid reassigning access numbers to replayed databasg l;sedtto chopt)_a long ex?tcunon m':jo Zn;)all PIECES, compeln-
accesses that had a timeout (lines 4 and 12). saling transactions are often provided by programmers. in
this case, in the example above, when the discrepancy be

tween the old and new request withidl is detected, the
new primary first callsl,’s compensating transaction and
then continues execution. That i&; effects are undone
Our 1-N algorithm extends the 1-1 algorithm in order and it appears as if it had never executed. Without compen-
to handle outer and inner transactions and the relationshipsating transactions the approach becomes best-effort since
between them. For that, we use a special request identifi-ghost transactions liké, cannot be undone. Sin@g does
cation system. A client request has the request id given bynot belong to an execution that was perceived correct by the
the client replication algorithm. Now assume a transaction client, 75 violates the request/transaction matching require-
T was initiated by a request with requestri@d. Then, the ment. In our solution, a client is informed about existing
i'th request made withiff” that starts an inner transaction ghost transactions whenever they are detected. Note how-

Case (3) is more difficult. The client resubmits request
%, triggering the start of a new transactibhat the new pri-

4.3 1-N Algorithm



ever that without compensating transactions the N-1 patternnot yet done so. In the last case, nothing needs to be done
allows even during normal processing that an inner transac-because all databases and the new primary have the correct
tion commits while the outer aborts. state after transaction execution.

4.4 N-N Algorithm 5 Client and Database Failures

For an N-N execution, the 1-N and N-1 algorithms have
to be merged. Complexity arises because of the following
situation. Assume a transactidh executing on behalf of
one or more client requests. Now assume fRainitiates
an inner transactioffy. In the 1-N model, there was one
specific request made [, that was executed in the con-
text of . However, with an N-N patterf; can first start
transactiorl,, then make a couple of requests that are ex-
ecuted withinT,, and then request the commit 6§. If
the primary fails after committinds, but before commit-
ting 71, the client replayq?. In order for the reexecution
to be successful, it must resubmit all requests associate
with T,, otherwiseT,> becomes a ghost transaction. Fur-

:)heerr?:;gé:gtzgebcgcrfgg ;ﬁsegzmlgsgq;ﬁggzsﬁznageaﬁflhfinish the execution. A N-1 or N-N execution should abort
y ' ' the transaction if the client had not yet submitted the com-

Server .must keep traF:k of all reque_st/response PaITS assocly,;¢ request because the AS server only has partial infor-
ated with committed inner transactions.

mation about the transaction. However, in the N-N pattern
this could result in an inner transaction committed while
the outer aborted due to the client crash. If a compensating

) ) _ transaction for the inner transaction exists we can apply it.
In order to handle 2PC, we adjust an idea proposed in

[16] for replication of stateless AS to work with stateful AS. .
For that, we have to slightly change the commit handling of 6 Evaluation
our algorithms (see Figure 2(c)). The primary intercepts
the firstpreparerequest sent by the TM to a database and We have integrated the approach into the J2EE server
multicasts gpreparingmessage to the backups before for- JBoss [17]. For that we used the ADAPT J2EE replica-
warding the request to the database. Then it intercepts thdion framework [5] which provides interceptor points and
first decision (commit/abort) that the TM sends to one of functionality like getting and setting component state. As
the databases. In case of commit, it sendsmamitting GCS we used Spread [1]. In J2EE both SFSBs and EBs can
message as in our previous algorithms before forwardingcontain state. However, the state of EBs is always written
the commit to the database. After the transaction has termi-back to the database at commit time. Hence, committing
nated at all databases, the response is returned to the clienhessages only contain SFSB state changes. We improved
and a correspondingmmit /abort message is multicastto  the 1-1 algorithm as presented in [27] by parallelizing some
the backups. No txid needs to be inserted into the databasetasks. The 2PC solution does not change the TM but uses
At the time the old primary crashes, the new primary wrapper objects to intercept the requests from the TM to the
might have received for a given transaction (1) not yet any databases. Our replication tool detects the execution pattern
message, (2) therepared message, (3) theommitting depending on the requests it intercepts, and automatically
message, (4) thebort/commit message. In the first case, applies the corresponding algorithm.
our failure assumptions guarantee an abort of the corre- Our performance evaluation analyzes the replication
sponding transaction at all databases. In case (2), som@verhead during normal processing using the ECperf bench-
might have aborted the transaction, others might be blockedmark [25]. The ECperf application is split into customer,
in the prepared state. The new primary can now force all manufacturing, supplier and corporate domains. {ffaes-
databases to abort the transaction if they have not yet donection injection ratg(IR) is an indicator of the load submit-
so. In case (3), some databases might have committed théed to the system (transactions per second). Results con-
transaction, others might be blocked, and the backup has retain the average response timeastler entrytransactions
ceived the component state changes. The new primary carof the customer domain in milliseconds, and the maximum
now ask all databases to commit the transaction if they haveachievable throughput measured in business operations per

If the database crashes the AS server has to wait until
it recovers (unless the database is replicated itself which
is outside the scope of this paper). Upon recovery, the
database aborts transactions that were active at the time of
the crash. The AS can easily determine whether a transac-
tion has committed by looking for the txid in the database
or by being aware of the steps of the 2PC protocol. In case
a transaction was active at the time of crash, and hence,
aborted, the AS primary can easily replay the transaction
in the 1-1 and 1-N patterns. In the N-1 case it has to for-

ard the abort exception to the client replication algorithm
ith a request to initiate the replay of the transaction.
If the client crashes, a 1-1 or 1-N execution can simply

4.5 A transaction accesses several databases



minute. Results are only measured over the steady statearlier due to CPU overhead. N-1-ordered saturates at 8
phase (10 minutes) of each test run. We also analyzedR, N-1-best-effort at 9 IR, and the non-replicated JBoss at
failover times but do not present them since the numbers10 IR.

for all tested cases were similar to [27]. Our configuration 1-N algorithm Figure 5(c) shows the response times for
consists of one machine emulating clients, one web serverthe 1-N execution pattern. We changed the ECperf im-
machine, two machines running JBoss application serverplementation such that each order entry request triggers
3.2.3., and one machine running the DB2 database systeman outer transaction which on average contains three in-
All machines were PCs 3.0 GHz Pentium 4 with 1 GB of ner transactions. Again, response times are generally higher
RAM) running RedHat Linux. than for the 1-1 execution pattern since now each order en-

Our evaluation compares (1) a regular, non-replicated try request includes several transactions. In absolute times,
JBoss server as baseline for Comparison; (2) two JBOSSthe 1-N algorithm takes more additional time than the 1-1
server replicas using our replication tool; (3) two JBoss algorithm in Figure5(a) since we now have to send an ad-
server replicas using JBoss'’s own replication solution called ditional uniform-reliable message for each inside transac-
JBoss clustering. JBoss clustering propagates state to backion. In contrast, JBoss clustering adds the same time (120
ups on a component basis just before the component return§s) as in the 1-1 pattern since the replication mechanism is
from a method call. Hence, if several components are callednot related to transactions. In terms of throughput, the 1-N
within one client request, several messages are sent. Foglgorithm saturates at 21 IR, JBoss clustering saturates at
more detail see related work. For both (2) and (3) one server23 IR, and the non-replicated JBoss saturates at 25 IR. The
was primary for all clients. We first looked at the 1-1, N-1, 1-N algorithms saturates earlier than JBoss because of the
and 1-N patterns using one database, and then look at théncreased bookkeeping to guarantee exactly-once execution
1-1 pattern accessing several databases. We looked at th@nd state consistency, and to detect ghost transactions.
patterns individually to understand the impact of the partic- 1-1 with 2PC  For this experiment we have not used the
ular mechanisms responsible. ECPerf but a simpler evaluation. A client submits one
1-1 algorithm  Figure 5(a) shows the average response reque;t to a SFSB which performs two database updates
times of order entry transactions at increasing IR for the 1—1that either access the same database (no 2PC) or different
execution pattern. Response times for the 1-1 algorithm aredatabases (requiring a 2PC). Table 1 shows the average re-
40% better than the original implementation in [27]. At low sponse time aF aload of 10 transactions per second, and the
load, the new 1-1 algorithm adds 15 ms (15% overhead). Asmaximum achievable throughput. Accessing one database,

a comparison, [21] also indicates around 15% overhead forthe 11 e_llgonthm adds 5.4 ms o the response t|mg of t.he
FT-CORBA (primary-backup) compared to non-replicated non-replicated JBos; reflecting a 15% increase, wh|le' with
CORBA. JBoss clustering adds around 120 ms (120% over-2 2PC, the 1-1 glgorlthm hgs an overhead of 8'_3 ms (it has
head). The high overhead is due because it sends state aftdf Send an additiongireparing message) but this reflects
each method invocation while our approach sends one mesd" Increase of only 8%. The maximum throughpu.t for the
sage per transaction. Response times for all setups increast 1 algpnthm compared to the non-replicated casels around
steadily with increasing load until saturation points which 90% with a 2PC and 86% when one database is accessed.

is around 27 IR for the non-replicated JBoss, 23 for \]BossThe 11 algor'lthm performs, in relative terms, bgtter W!th
clustering and the 1-1 algorithm. a 2PC than without because the total response times with a

N-1 algorith Fi 5(b) sh th i ‘ 2PC is so much higher than if no 2PC is necessary.
- aigonthm  Figure (b) shows € response times for In summary, these experiments show that our solutions
the N-1 execution pattern. We modified the ECperf im-

. in general incur little overhead for all typical execution pat-
Yerns. Our replication tool clearly outperforms JBoss’s clus-

on average 5 order regue;ts. The figure _does hot .Sho‘_N refering mechanism in all cases in terms of response time, and
sults for JBoss clustering since response times are five times, cimilar in terms of saturation point
¥ .

as high as in the 1-1 model. Response times are generall
higher than for the 1-1 model shown in Fig. 5(a) since sev-
eral client requests are included in one transaction. Com-/ Related Work

pared to no replication, the N-1-best-effort algorithm adds

again about 15% overhead while N-1-ordered adds 30%. Looking at J2EE servers, JBoss [17] makes each replica
The latter has higher overhead since it propagates the orprimary for some clients. Since state is propagated each
der in which database access takes place at the end of eadime a component returns from a method call, several mes-
client request. Considering that these are five additionalsages might be sent for each client request. As a result, if
messages, the overhead is quite small. This is true becausthe primary crashes in the middle of executing a request
the messages are small and only sent with reliable delivery.the state changes for some components might be propa-
In regard to throughput, all configurations saturate much gated but others not. Pramati [23] logs state changes in
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Figure 5. ECperf Response Time Comparison
Model Algorithm Response Time (ms) Tx numbers (per second)
one database Non-replicated JBos$ 34.9 30
1-1 algorithm 40.3 26
more than one databaseNon-replicated JBoss 103.5 10
1-1 algorithm 111.8 9

Table 1. 1-1 execution accessing one or more than one database

the database and receives them upon recovery after a craslloes not consider state changes outside the database.
WebLogic [6] uses a single primary server replica, and only

propagates changes after commit. None of the systems SUPg  Conclusion

ports advanced execution models and only Pramati provides

state consistency for the 1-1 pattern.

There exists many proposals for replication of CORBA
components, e.g., [8, 9, 22, 19, 12, 2]. Most of them do not
consider database access. [28] extend the CORBA base
fault-tolerant Eternal system [22] to work correctly with

This paper presents a replication tool for AS servers that
is able to combine replication and transactions for advanced
xecution patterns providing strong correctness properties.
%ur solution does not require any special properties from
the component implementations, the clients or the database.

a database back.end t|'er. The transag:ﬂon context W'tthe have integrated our solution into the J2EE server JBoss,
the components is replicated, and duplicate requests to theout we believe that the main ideas can be applied to other

gatatbase grf supp_risseflé Howte)z_ver, colmptqnent gxtecuuogrchitectures. Our approach has comparable or better per-
as o be deterministic. [13] combine replication and trans- formance than existing solutions while providing stronger

alcuo'f]ti for HC ORBA using arf1 tipproach S|rr1n|lar to Fge 1'%1 semantics for many different execution patterns.
aigorithm.  HOWever, none ot the approaches provides ad- Our current research looks at fault-tolerance if a web-

vanced e>.<ecut|on patterns. _server is applied between client and AS. Any web-server
Phoenix [4, 3] for .NET handles the 1-1 pattern with repjication must be coordinated with our AS replication.
one database using checkpoints and request/reply 1oggindwe are also currently extending our algorithms to allow
Failover starts from the last checkpoint and applies logged y,qre than one primary in order to distributed client request
requests assuming piecewise deterministic behavior [11].  5~r6s5 several replicas.
Outside of any concrete AS architecture, [15] provides
exactly-once execution for stateful AS for the 1-1 pattern
accessing one database. [14, 16] provide exactly-once seR eferences
mantics forstateles#\S for the 1-1 pattern. Our algorithms ) _ o )
use similar mechanisms to check the status of database [1] Y- Amir, C. Danilov, M. Miskin-Amir, J. Schultz, and
transactions. We advance this existing work by looking at %]érnsqfnnégn.TecEr]scjngzggrtt(ztolllklljt'S-zA()rgzl-tlecggﬁ ?;ngs;
stateful AS and advanced execution patterns, and by inte- ' ' ' '
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