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Abstract

Replication is widely used in application server products
to tolerate faults. An important challenge is to correctly co-
ordinate replication and transaction execution for stateful
application servers. Many current solutions assume that a
single client request generates exactly one transaction at
the server. However, it is quite common that several client
requests are encapsulated within one server transaction or
that a single client request can initiate several server trans-
actions. In this paper, we propose a replication tool that
is able to handle these variations in request/transaction as-
sociation. We have integrated our approach into the J2EE
application server JBoss. Our evaluation using the ECPerf
benchmark shows a low overhead of the approach.

1 Introduction

Application servers (AS) have become a prevalent build-
ing block in current information systems. Clients send re-
quests to an AS which accesses database systems to manage
persistent data. The AS runs the application programs and
maintains volatile data, such as session information, i.e., the
server isstateful. Requests are executed in the context of
transactions which provide durability for the persistent data,
isolation from concurrent transactions, and atomicity. In
the simplest execution model, each client request executes
within its own individual transaction. In practice, however,
execution can be more complex. For instance, the client
can start a transaction, and then submit several requests in
the context of this transaction before committing it. This
is, e.g., often used when a web server (WS) is positioned
between the real (internet) client and the AS. At the other
extreme, one client request might create several indepen-
dent transactions in the AS. Application programmers often
chop the execution of a request into a set of small transac-
tions to avoid lock contention at the database.

AS servers are often replicated to achieve 7/24 availabil-
ity. If one replica crashes, the work assigned to this replica

can failover to another replica. The challenge is to correctly
handle requests and transactions that are active at the time of
the crash. The AS replication solutions we are aware of only
consider the simple case where one request is associated
with exactly one transaction [15, 16, 14, 13, 28, 4, 3, 27]. In
contrast, we propose a tool that is able to handle different
execution patterns as described above. The system should
provideexactly-onceexecution andstate consistencyeven
in the case of crashes [15, 27]. Assuming the 1-request/1-
transaction pattern, exactly-once means that for each sub-
mitted client request, the server executes the corresponding
transaction exactly once. State consistency guarantees that
the state at AS replicas and database is always consistent.
We refine these correctness properties to be able to capture
advanced execution patterns.

Our tool is based on an existing protocol [27] which as-
sumes the simple 1-request/1-transaction pattern. It uses a
classical primary/backup approach [18, 21, 15, 13, 2]. One
server replica is the primary executing client requests. It
propagates state changes to the backup replicas whenever a
transaction commits. If the primary fails, a backup replica
fails over, reconstructs the state of the old primary, and con-
tinues the client connections. Requests that were active at
the time the primary crashed (and only those) are automat-
ically restarted at the new primary. This paper extends the
basic tool to support advanced execution patterns.

Our goal is to provide a practical solution with little over-
head. Hence, we have developed our replication tool within
the context of a concrete AS architecture, namely J2EE [26]
and integrated it into the open-source AS JBoss [17]. We
believe, however, that the principle ideas can be applied to
other kinds of application servers (e.g., CORBA, .NET),
and hence, keep the algorithmic description as general as
possible. Our performance analysis shows that the approach
compares favorably with other fault-tolerant solutions.

2 Background

AS architecture We assume the application logic to
be programmed within components (Enterprise JavaBeans



(EJB) in J2EE). Components can have state. We assume
that a component is only associated with a single client
(e.g., stateful session beans (SFSB) in J2EE), or that there
is a concurrency control mechanism in place that allows at
most one transaction to be active on the component (e.g.,
entity beans (EB) in J2EE). We assume all components to
run within the same runtime environment (called container
in J2EE). Additionally, the server provides a set of services
like transactions and security. Figure?? shows an J2EE ar-
chitecture with a transaction service, and three EJBs. The
client makes a request to a method of an EJB which in turn
can call other EJBs and/or the database before returning a
response to the client.

Most AS architectures provide two ways to access ser-
vices. Either the components explicitly make service calls
or such service calls are made automatically whenever a
method of a component is activated. The transaction ser-
vice is implemented by the transaction manager (TM). A
transaction consists of a set of operations. If a transaction
commits, all its operations succeed. The state changes in
the database are persistent while changes on AS compo-
nents usually remain volatile. If the transaction aborts, any
changes performed so far on the database are undone by the
database system. Whether the changed state on AS compo-
nents is undone depends on the AS architecture. In J2EE,
changes on SFSBs are not automatically undone. How-
ever, programmers can provide rollback methods for SFSBs
which are automatically called by the J2EE server in the
abort case. We say the AS server providesfull state consis-
tencyif mechanisms exist to abort changes on components,
otherwise it providesrelaxed state-consistency. If a trans-
action accesses more than one database, a 2-phase commit
protocol (2PC) is necessary at commit time for atomicity.
The TM first sends aprepare request to all participating
databases which return either with apreparedmessage or
their decision to abort. If all databases have successfully
prepared, the TM sends acommitdecision to all databases,
otherwise (at least one aborted) anabort confirmation. The
databases terminate the transaction accordingly.

Communication between AS replicas is via agroup com-
munication system(GCS) [7]. A group member can mul-
ticast a message to all members (including itself). Send-
ing a message withreliable deliveryguarantees that when a
member receives a message and does not fail for sufficiently
long time then all members receive the message unless they
fail. Uniform-reliable deliveryis stronger: if any member
receives a message (even if it fails immediately afterwards)
all members receive the message unless they fail. Our al-
gorithms require all messages of the same sender to be re-
ceived in sending order (FIFO). The GCS automatically re-
moves crashed members from the view of currently con-
nected members and also provides explicit join and leave
primitives. Upon a view change all members receive a view

change message providing thevirtual synchronyproperty:
if membersp andq receive both first viewV and thenV ′,
they receive the same set of messages while members ofV .
In an asynchronous environment, the GCS might wrongly
exclude a non-crashed member. In this case, we require the
affected replica to shut down. An alternative would have
been to apply semi-passive mechanisms [10].

3 Model

We make the following assumptions. All communication
is asynchronous and reliable (no network partitions). Indi-
vidual components within a server do not fail but an AS only
fails entirely by crashing (no byzantine behavior). For now,
databases and clients do not crash. We discuss their crashes
in Section 5. Clients and components are single-threaded
that block when waiting for the response of a request but
execution does not need to be deterministic. For space rea-
sons, we only consider full state consistency. Our solutions
for relaxed state consistency handle transaction abort differ-
ently but use similar reasoning.

In a non-replicated system without crash, we assume
each request to execute successfully, and the server to pro-
vide acorrect response. This could be an abort exception if
the transaction fails, e.g., due to application semantics.

If a non-replicated server crashes before returning a cor-
rect response to a request, the client receives afailure ex-
ception, and the request is executed at-most-once. All state
at the AS and the database connections are lost. We assume
the standard database behavior in this case: the database
aborts all active transactions except those in theprepared
state (in case of 2PC) which will remain active until the
database receives thecommit/abortdecision.

Execution Patterns We classify execution patterns by the
number of client requests involved in a transaction and the
number of transactions generated by a request. In the1-1
pattern (1-request/1-transaction), each client request initi-
ates a single transactionT , and the entire request execution
on the AS and the database is performed withinT .

A first extension allows several client requests to run
within a single transaction (see Fig??(a)) leading to aN-
1 pattern(N-requests/1-transaction). A client first sends a
begintransaction request, then several requests for compo-
nents, and finally acommit/abortrequest. The client re-
ceives responses before the corresponding transaction ter-
minates. This pattern requires the AS to export the be-
gin/commit/abort methods of the TM. It is often used when
a web-server (WS) runs between the real client and the AS.
In this case, the real client makes a request to a component
in the WS (e.g., a servlet) which is in turn the client for the
AS and makes calls to the AS. Controlling transactions from
outside the AS has also become important for web-services.

The second extension allows a client request to gener-
ate more than one transactions leading to a1-N pattern



(1-request/N-transactions). We explain the semantics us-
ing the example of Fig??(b). A client request to a compo-
nent initiates a transactionT1. When the component creates
a sub-request to another component during the execution,
T1 is suspended and a new transactionT2 is started1. The
sub-request is executed within the context ofT2. WhenT2

commits,T1 resumes, and further execution again happens
within the context ofT1. T2 might commit whileT1 aborts,
or vice versa. However,T2 always terminates beforeT1.
We callT1 theouterandT2 the inner transaction. An outer
transaction might have several inner transactions, and an in-
ner transaction might be the outer transaction of another in-
ner transaction. The 1-N pattern is widely used in practice
when a long execution needs to be chopped into small trans-
actions in order to increase concurrency within the database
[24, 20]. The programmer typically provides compensating
transactions for each transaction type in order to guaran-
tee that if not all transactions commit the effects of already
committed transactions are undone.

Finally, the two extensions can be combined to aN-N
pattern. Several client requests might execute within trans-
actionT1 while T1 initiates several inner transactions. Fur-
thermore, the patterns above can be refined by considering
that each transaction might access only one database or sev-
eral databases. Only in the latter case 2PC is needed.

Correctness For space reasons we are not able to pro-
vide a formal correctness definition or formally prove the
correctness of the algorithms. Instead, we resort to a more
informal reasoning. We state correctness as a set of prop-
erties that have to be provided despite crashes of individ-
ual AS replicas. From the perspective of the client, cor-
rectness meansexactly-once request execution, that is, the
client receives exactly one correct response for each submit-
ted request, and no failure exception. From the perspective
of the server we requireexactly-once transaction execution
andfull state consistency. The first requires that each trans-
action commits at most once. If it does not commit, it aborts
due to application semantics or database exceptions (e.g.,
deadlock). The second requires that if a transactionT com-
mits, the database has committedT and all non-crashed AS
replicas have the state changes performed byT . If T aborts,
the database has abortedT , and none of the AS replicas has
the state changes performed byT . Additionally, in order
to synchronize client and server perceived correctness we
require what we callrequest / transaction matching. This
means that each committed transaction must be result of the
successful execution of a request or sequence of requests,
namely the one that produces the correct response seen by
the client. This requirement is motivated by the fact that the
execution of a request might be replayed if its first execution

1In J2EE, the application programmer can specify at deployment time
that a call to a method should always generate a new transaction.

was interrupted by a crash. However, if the failed execution
led to the commit of a transaction and the second, success-
ful execution follows a different execution path that would
not include this very same transaction, then we would have
a ghosttransaction that does not refer to any execution that
the client perceives as successful.

4 Replication Algorithms

Our replication tool uses a primary/backup approach. It
consists of a client algorithm (which is downloaded to the
client when it connects to the AS) and a server part. We
assume the replication tool obtains control before a request
is sent to the TM or a component, and after the call returns.

We first provide an overview of the algorithm for the 1-1
pattern, and then discuss the N-1, 1-N and N-N algorithms
when only one database is accessed. For space and read-
ability reasons we only present the solution for N-1 in algo-
rithmic form. We also shortly discuss how the algorithms
can be adjusted to work with more than one database.

4.1 1-1 Algorithm Overview

Our 1-1 algorithm is from [27] which in turn had com-
bined ideas from [14, 13]. The client replication algo-
rithm intercepts each request submitted from the client to
the server, attaches a unique id, and forwards the request to
the current primary. Upon a failure exception, it resends the
request with the same id to the new primary. This repeats
until it receives a correct response.

The primary executes a client request within a transac-
tionT . At commit time, it propagates all changes performed
byT on components together with the request/response pair
in a singlecommittingmessage (uniform-reliable delivery),
and enters the identifiertxid of T into the database as part
of the transaction. When it receives its own committing
message, it commitsT , returns the response to the user,
and multicasts acommittedmessage (reliable delivery). If
T aborts at some time during the execution, anaborted
message is multicast (reliable delivery) containing the re-
quest/abort response pair.

When the primary crashes, a backup becomes the new
primary and performs failover. For a given request with
associated transactionT , the new primary might have re-
ceived before the crash (1) not yet any message, (2) the
committing message but no decision message, or the (3)
commit/aborted messages. In the first case, our failure as-
sumptions guarantees that the database abortedT . In the
second case, the database might have committed or aborted
T . The new primary checks whetherT ’s txid was inserted
in the database. If yes, the database had committedT , and
the new primary applies the component changes included
in the committing message, and stores the request/response



pair. Otherwise it ignores the committing message. In case
(3), if the decision was commit, the new primary applies the
component changes of the committing message, if the deci-
sion was abort, it ignores them. In any case, it stores the
request/response pair. After failover, when the new primary
receives a request from a client it checks first whether it has
recorded a corresponding request/response pair, and if yes,
returns immediately the response. Otherwise it executes the
request according to the primary algorithm.

Resubmitting requests in failure cases but avoiding
reexecution if the request was already successfully ex-
ecuted provides exactly-once execution and proper re-
quest/transaction matching. Inserting the txid into the
database allows the new primary to check wether the
database transaction committed, and apply or disregard the
AS state accordingly, hence providing state consistency.

4.2 N-1 Algorithm

In the N-1 model the client can include several requests
within a single transaction. If the primary now crashes be-
fore a transactionT commits, the database abortsT , but the
client might have already received the responses for some
of the requests belonging toT . These responses now refer
to a transaction that aborted at the database due to a crash.
We have implemented two approaches to address this prob-
lem. TheN-1-best-effortalgorithm is fast but only provides
at-most-once execution in some cases. TheN-1-orderedal-
ternative achieves better transparency at the price of higher
overhead during normal processing.

N-1-best-effort In the first approach, the main adjustments
are at the client side. The client replication algorithm keeps
all requests and corresponding responses for each transac-
tion. If the primary crashes while a transaction was active,
the client algorithm replays the execution at the new pri-
mary. If it leads to the same results as the original execution,
it was successful and failover is completely transparent. If
it leads to different results, the replay was unsuccessful and
the reexecuted transaction is aborted. The real client, hav-
ing seen the old non-repeatable responses, is informed with
a failure exception, and hence transparency is lost.

Figures 1, 2, 3 show the N-1-best effort algorithm.Re-
questhas an identifierrid while a Responsecaptures the
response to a request. A singleCEU objectceu at the client
replication algorithm keeps track of the execution within
the current transaction. It contains the transaction identifier
txid of typeTID, and all requests executed so far together
with their responses (RR). The server maintains anEU ob-
ject for each currently active transaction (one per client).
EU keeps track of transaction identifiertxid and the set of
componentsCOMP that have been accessed so far. In con-
trast to the 1-1 algorithm, the servers do not need to keep
track of request/response pairs. Thecontent of a Message

void begin ()
1. while (true)
2. ceu.initialize();
3. ceu.txid = primary.begin();
4. if (@ failure Exception) return;
5. else find a new primary;

(a) transaction begin

Response invoke (Request req, Component comp)
1. Generate req.rid;
2. while (true)
3. Response resp = primary.invoke(req, comp, ceu.txid);
4. if (∃ abort Exception) throw abort Exception;
5. if (@ failure Exception)
6. ceu.RR∪ = {(req, comp, resp)};
7. return resp;
8. else
9. while (∃ failure Exception)

10. find a new primary;
11. replay(ceu);
12. if (∃ replay failure)
13. ceu.initialize();
14. throw replay failure;
(b) regular request

void commit ()
1. while (true)
2. primary.commit(ceu.txid);
3. if (@ failure Exception)
4. ceu.initialize();
5. if (∃ abort Exception) throw abort Exception;
6. else return;
7. else
8. while (∃ failure Exception)
9. find a new primary;

10. if (primary.iscommitted(ceu.txid))
11. ceu.initialize();
12. return;
13. else
14. replay(ceu);
15. if (∃ replay failure)
16. ceu.initialize();
17. throw replay failure;
(c) transaction commit

void replay (CEU ceu)
1. ceu.txid = primary.begin();
2. if (∃ failure Exception) throw failure Exception
3. else
4. for each (oreq, ocomp, oresp)∈ ceu.RR
5. Response nresp = primary.invoke (oreq, ocomp, ceu.txid);
6. if (∃ failure exception) throw failure Exception
7. else if (∃ abort exception) throw replay failure
8. else if (nresp != oresp)
9. primary.abort(ceu.txid);

10. throw replay failure;
(d) replay

Figure 1. N-1-best-effort at the client side

object depends on the type of message.
The client replication algorithm (Figure 1) intercepts be-

gin, invoke and commit requests. We ignore abort requests
for space reasons. For simplicity, the algorithmic descrip-
tion assumes that the client submits requests in the correct
order (begin/invoke/invoke.../commit). An abort induced by



application semantics or by the database (deadlock, etc.) is
considered a correct response. In this case, we expect the
client to submit a new begin transaction as next request.

Upon intercepting the begin request (Fig. 1(a)). theceu
object is initialized and the request is forwarded to the cur-
rent primary until it is successfully executed. Upon an in-
voke request (Fig. 1(b)), the response from the primary is
captured (lines 3-7), or, if the primary crashes a replay is
initiated at the new primary (lines 9-14). Upon a commit
request (Fig. 1(c)), if no crash happens, the commit returns
to the user. If the transaction aborts because of database se-
mantics, the response is an abort exception (lines 3-6). If a
crash occurred before the server returns from the commit,
the transaction might have committed before the crash or it
aborted upon the crash. The client algorithm checks at the
new primary (lines 9-10). We will see later how the new
primary answers such request. If the transaction commit-
ted, the commit request returns successfully (lines 11-12).
Otherwise, the transaction is replayed at the new primary
(lines 13-17). The replay (Fig. 1(d)) starts a new transaction
and resubmits each request of the old execution (lines 1-5).
If one of these requests receives a different response than
the original execution, the reexecuted transaction is aborted
throwing a replay failure exception to the client (lines 7-
10). It is now up to the client to act upon this. Otherwise,
reexecution has been successful and the algorithm contin-
ues with the request that was active at the time of the crash.
Note that after the reexecution the state of the new primary
(or the database) might not be exactly the same as the state
of the old primary after the first execution, but this does not
really matter because only responses but not server state is
visible to the client. Throughout the algorithm additional
AS crashes reset the algorithm to the appropriate place.

The server (Figure 2) creates aneu object upon trans-
action begin (Fig. 2(a)), and keeps track of each compo-
nent accessed by a request (Fig. 2(b)). At commit time
(Fig. 2(c)), we send the committing message including the
final state for each accessed component, and insert the txid
into the database (lines 1-8). Then we commit the trans-
action. If commit was successful, we send a commit mes-
sage (lines 9-13) and the commit completes. If commit is
not successful due to database semantics, the primary in-
forms the backups about the abort so that they can discard
the committing message, and returns the exception to the
client (lines 15-18). When asked by the client replication
algorithm, theis committedroutine (Fig. 2(d)), checks in
the database for the txid and returns the answer.

The backup, during normal processing, stores all re-
ceived messages in a FIFO queue. Figure 3 shows the
failover. Committing messages are processed in FIFO or-
der to track the latest state of each component (lines 2-3).
If the corresponding transaction committed, we determine
which components were affected (lines 8-12). Otherwise

TID begin ()
1. new EU eu;
2. eu.txid = TM.beginTransaction();
3. return eu.txid;

(a) transaction begin

Response invoke (Request req, Component comp, TID txid)
1. find eu corresponding to txid;
2. eu.COMP∪ = {comp};
3. return comp.invoke(req);

(b) regular request at primary

void commit (TID txid)
1. find eu corresponding to txid;
2. for each comp∈ eu.COMP
3. set comp.state to current state of corresp. component;
4. new committing Message m1;
5. m1.content ={eu};
6. multicast m1 by uniform reliable delivery;
7. insert eu.txid into database;
8. wait until receive m1;
9. TM.commitTranasction(txid);

10. if (@ abort Exception)
11. new committed Message m2;
12. m2.content ={eu.txid};
13. multicast m2 by reliable delivery;
14. else
15. new aborted Message m3;
16. m3.content ={eu.txid};
17. multicast m3 by reliable delivery;
18. throw abort Exception;
(c) transaction commit

Bool is committed (TID txid)
1. if txid can be found in database return true
2. else return false;

(d) check outcome of transaction

Figure 2. N-1-best-effort at primary

the committing message is ignored (lines 4-7). Finally, all
necessary components are recreated (13-15). Alternatively,
component recreation can also happenlazily after failover
during normal processing of the new primary: whenever a
client makes a request to a component we first look whether
it is in COMP and if yes, remove it from COMP, initial-
ize it, and adjust the component state before performing the
corresponding operations.

Reasoning about correctnessWe have to look at the time-
points at which the primary can crash. (1) If it crashes when
the client attempts to start a transaction, the database trans-
action (if already started) aborts, and the new primary has
not yet done anything. The client algorithm simply restarts
the transaction. (2) If it crashes sometime during the ex-
ecution before the client submits the commit request, the
database transaction aborts and the new primary does not
know anything about the transaction. The client algorithm
replays the execution at the new primary. If it is success-
ful, execution continues with the last request submitted. In
this case the client perceives exactly-once execution for its
requests, the server executes the corresponding transaction
exactly once, the state between database and new primary is



void failover ()
1. new Eu eu, new set COMP;
2. in order of reception process each committing message m
3. eu = m.content
4. if (∃ aborted message m’ with m’.content == eu.txid)
5. or (@ committed message m’ with m’.content == eu.txid
6. and eu.txid does not exist in database)
7. ignore committing message
8. else // transaction committed
9. for each comp∈ eu.COMP

10. if (∃ c∈ COMP && c == comp)
11. c.state = comp.state
12. else COMP∪ = comp;
13. for each comp∈ COMP
14. create corresponding component;
15. set component’s state to comp.state;

Figure 3. N-1-best-effort failover at backup

consistent, and client and server execution matches. If the
replay is not successful, the transaction aborts. The client is
informed and exactly-once is not provided. However, state
consistency is provided, and since neither the client nor the
server perceives a successful outcome, execution matches.
(3) If the primary crashes after the client had submitted the
commit request but before receiving a response, the cases
are the same as those in the 1-1 algorithm: the new pri-
mary might not yet have received any message, might have
received the committing but not the committed message,
or might have received the commit/abort message. The
failover mechanism guarantees the state consistency be-
tween database and AS server by applying the state changes
of the committing message if and only if the database trans-
action has committed. The client checks at the new pri-
mary whether the transaction had committed. If it commit-
ted, no reexecution takes place. This provides exactly-once
execution at both client and server and execution match-
ing. If it did not commit, replay is initiated as in situation
(2) above. In total, this protocol provides state consistency,
request/transaction matching, and at-most-once execution.
AS failures are transparent in some but not all cases. Note
that if the transaction aborts due to application semantics
but the primary crashes before returning the response, the
client replication algorithm will actually replay the transac-
tion. This does not violate any of the properties.

Increasing the chances for exactly-onceReexecution
might not succeed if non-determinism occurs which can
happen because of database access. For example, assume
before the primary crash,T1 reads and updatesx, and re-
turns a response to the client. Then the primary crashes
beforeT1 commits. At the new primary assume a trans-
action T2 reads and updatesx beforeT1 resubmit its re-
quest. Hence,T1’s replay reads a different value ofx than
during the original execution. This might lead to a dif-
ferent response if the value ofx affects the response. To
avoid such behavior, we propose an alternative algorithm

Result interceptDatabaseAccess (Request clientreq, SQL sql)
1. while (RDBAT.size> 0 and clientreq.rid != RDBAT.First().rid)
2. client req waits until timeout or notification;
3. if (timeout)
4. TOA = RDBAT;
5. RDBAT.empty();
6. notify each waiting clientreq;
7. Result r = execute sql in the database;
8. if (req.rid == RDBAT.First().rid)
9. RDBAT.removeFirst();

10. notify each waiting clientreq;
11. else
12. if (@ toa∈ TOA with toa.rid = req.rid) // original execution
13. new DBA dba;
14. dba.rid = req.rid;
15. dba.order = counter++;
16. DBAT∪ = {dba};
17. return r;
(a) database access

Response invoke (Request req, Component comp, TID txid)
1. find eu corresponding to txid;
2. eu.COMP∪ = {comp};
3. Response resp = comp.invoke(req)
4. if (req is a client request)
5. new set cds;
6. for each dba∈ DBAT with dba.rid == req.rid;
7. cds∪ = {dba}; DBAT\ = {dba}
8. if (cds !=∅)
9. new ordering Message m;

10. m.content ={(txid, cds)};
11. multicast m by reliable delivery;
12. return eu.resp;
(b) regular request leading to multicast ordering message

void failover ()
1. ...
2. new list RDBAT;
3. in order of reception process each ordering message m
4. if ∃ committed message m’ with m’.content = m.content.txid
5. or m.content.txid exists in database
6. discard m;
7. else
8. for each dba∈m.content.cds
9. RDBAT.add(dba);

10. sort RDBAT ascendingly according to dba.order and set counter
accordingly;

(c) handling ordering message at failover

Figure 4. N-1-ordered extensions

N-1-orderedthat works for database systems that guaran-
tee serializability through strict 2-phase locking. With N-1-
ordered, the reexecution of all database access is performed
in the same order as during the original execution. Dur-
ing normal processing, each database access is assigned a
unique increasing identifier. Before the response for the re-
quest is returned, a message with the identifiers of all ac-
cess triggered by the request is multicast to the backups. At
the time of resubmission after the primary crashes, each re-
played database access must be executed according to its
original order and new requests may not start until all re-
submissions have completed. In the example above, when



T2’s request is submitted beforeT1 resubmits its request, it
has to wait untilT1’s request is reexecuted to guarantee that
T1 again reads the same data as in the original execution.

Figure 4 shows how the N-1-ordered algorithm extends
the N-1-best-effort algorithm. During normal processing,
the N-1-ordered algorithm intercepts all accesses to the
database (Fig. 4(a)). We assume the algorithm knows
from which client request each database access is triggered.
For the original execution (no resubmission) aDBA object
records the pair of the rid of the client request and a unique
increasing number which represents the order of the access.
A DBAT set captures allDBA objects. Before the re-
sponse for a client request is returned, anordering mes-
sage is multicast to all backups containing all corresponding
DBA objects (Fig. 4(b)). Requests that do not access the
database do not require a multicast message. At failover,
the new primary will handle all the ordering messages re-
ceived before the crash of the old primary (Fig. 4(c)). We
discard each ordering message for which the corresponding
transaction has committed, since client requests involved in
this transaction will not be resubmitted (lines 3-6). Other-
wise, theDBA objects contained in the ordering message
will be recorded in a listRDBAT and sorted in ascending
database access order (lines 8-10). When a client request
is replayed at the new primary, each resulting database ac-
cess will be intercepted (Fig. 4(a)). If the order of the re-
played database access is not the smallest as recorded in
theRDBAT , it has to wait until all database accesses with
smaller order have been executed (lines 1-2). A new request
(not resubmitted) has to wait untilRDBAT is empty. Only
when these conditions are fulfilled, the database access can
be executed (line 7). In order to handle clients that do not
replay (e.g., they crashed by themselves), there is a timeout
(lines 3-6) of how long a request is blocked. When the first
timeout is triggered, all waiting requests will be notified,
and all further request will not be blocked by the ordering
mechanism to guarantee termination. For instance, in above
example, ifT1 does not resubmit its request within a cer-
tain time,T2’s request will execute. In case of timeout, the
RDBAT will be emptied, but the remainingDBA objects
in the RDBAT will be temporarily stored in a listTOA
to avoid reassigning access numbers to replayed database
accesses that had a timeout (lines 4 and 12).

4.3 1-N Algorithm

Our 1-N algorithm extends the 1-1 algorithm in order
to handle outer and inner transactions and the relationship
between them. For that, we use a special request identifi-
cation system. A client request has the request id given by
the client replication algorithm. Now assume a transaction
T was initiated by a request with request idrid. Then, the
i’th request made withinT that starts an inner transaction

receives as request idrid.i, i.e., a concatenation of the re-
quest id of the outer transactionT and a counter that keeps
track of how many inner transactionsT started.

The algorithm handles inner transactions in the same
way as outer transactions. At commit time of any inner or
outer transaction, the request/response pair and the changed
components are multicast as in the 1-1 algorithm. Since we
use FIFO multicast and inner transactions always terminate
before their corresponding outer transaction, the messages
of an inner transaction always arrive at the backups before
the messages of the corresponding outer transaction. As-
sume transactionT1 triggered by client request with request
id 1 submits a request with request id1.1 that starts inner
transactionT2. When the primary crashes, there are three
main cases. (1) BothT1 andT2 were still active, (2) both
had terminated (commit or application induced abort), or
(3) T2 had terminated whileT1 was active. The new pri-
mary is able to distinguish these three cases by examining
the messages it has received forT1 andT2 during normal
processing and checking for transaction identifiers in the
database if necessary. In the first case, it will not apply any
component changes even if it had received the committing
message. The client will resubmit request 1 and the new
primary reexecutes starting withT1. All correctness prop-
erties are provided. In the second case, the new primary
has installed the component changes of both transactions.
If the client replication algorithm resubmits the request 1,
T1’s response is immediately returned without reexecution.

Case (3) is more difficult. The client resubmits request
1, triggering the start of a new transactionT ′1 at the new pri-
mary. If the execution is deterministic,T ′1 will submit the
very same request 1.1 that initiatedT2 on the old primary.
Since the new primary keeps the request/response pair for
T2, the new primary immediately returns the response with-
out reexecution. With this,T2 is executed exactly once and
its execution is part of the correct response returned to the
client. However, if execution is not deterministic,T ′1 might
not make the same request1.1 as in the original execution.
Our first solution to handle this problem assumes that com-
pensating transactions exist. Recall that if the 1-N pattern
is used to chop a long execution into small pieces, compen-
sating transactions are often provided by programmers. In
this case, in the example above, when the discrepancy be-
tween the old and new request with id1.1 is detected, the
new primary first callsT2’s compensating transaction and
then continues execution. That is,T2 effects are undone
and it appears as if it had never executed. Without compen-
sating transactions the approach becomes best-effort since
ghost transactions likeT2 cannot be undone. SinceT2 does
not belong to an execution that was perceived correct by the
client,T2 violates the request/transaction matching require-
ment. In our solution, a client is informed about existing
ghost transactions whenever they are detected. Note how-



ever that without compensating transactions the N-1 pattern
allows even during normal processing that an inner transac-
tion commits while the outer aborts.

4.4 N-N Algorithm

For an N-N execution, the 1-N and N-1 algorithms have
to be merged. Complexity arises because of the following
situation. Assume a transactionT1 executing on behalf of
one or more client requests. Now assume thatT1 initiates
an inner transactionT2. In the 1-N model, there was one
specific request made byT1 that was executed in the con-
text of T2. However, with an N-N pattern,T1 can first start
transactionT2, then make a couple of requests that are ex-
ecuted withinT2, and then request the commit ofT2. If
the primary fails after committingT2 but before commit-
ting T1, the client replaysT1. In order for the reexecution
to be successful, it must resubmit all requests associated
with T2, otherwiseT2 becomes a ghost transaction. Fur-
thermore, none of these resubmitted requests may actually
be reexecuted becauseT2 already committed. Hence, the
server must keep track of all request/response pairs associ-
ated with committed inner transactions.

4.5 A transaction accesses several databases

In order to handle 2PC, we adjust an idea proposed in
[16] for replication of stateless AS to work with stateful AS.
For that, we have to slightly change the commit handling of
our algorithms (see Figure 2(c)). The primary intercepts
the firstpreparerequest sent by the TM to a database and
multicasts apreparingmessage to the backups before for-
warding the request to the database. Then it intercepts the
first decision (commit/abort) that the TM sends to one of
the databases. In case of commit, it sends acommitting
message as in our previous algorithms before forwarding
the commit to the database. After the transaction has termi-
nated at all databases, the response is returned to the client
and a correspondingcommit/abort message is multicast to
the backups. No txid needs to be inserted into the database.

At the time the old primary crashes, the new primary
might have received for a given transaction (1) not yet any
message, (2) theprepared message, (3) thecommitting
message, (4) theabort/commit message. In the first case,
our failure assumptions guarantee an abort of the corre-
sponding transaction at all databases. In case (2), some
might have aborted the transaction, others might be blocked
in the prepared state. The new primary can now force all
databases to abort the transaction if they have not yet done
so. In case (3), some databases might have committed the
transaction, others might be blocked, and the backup has re-
ceived the component state changes. The new primary can
now ask all databases to commit the transaction if they have

not yet done so. In the last case, nothing needs to be done
because all databases and the new primary have the correct
state after transaction execution.

5 Client and Database Failures

If the database crashes the AS server has to wait until
it recovers (unless the database is replicated itself which
is outside the scope of this paper). Upon recovery, the
database aborts transactions that were active at the time of
the crash. The AS can easily determine whether a transac-
tion has committed by looking for the txid in the database
or by being aware of the steps of the 2PC protocol. In case
a transaction was active at the time of crash, and hence,
aborted, the AS primary can easily replay the transaction
in the 1-1 and 1-N patterns. In the N-1 case it has to for-
ward the abort exception to the client replication algorithm
with a request to initiate the replay of the transaction.

If the client crashes, a 1-1 or 1-N execution can simply
finish the execution. A N-1 or N-N execution should abort
the transaction if the client had not yet submitted the com-
mit request because the AS server only has partial infor-
mation about the transaction. However, in the N-N pattern
this could result in an inner transaction committed while
the outer aborted due to the client crash. If a compensating
transaction for the inner transaction exists we can apply it.

6 Evaluation

We have integrated the approach into the J2EE server
JBoss [17]. For that we used the ADAPT J2EE replica-
tion framework [5] which provides interceptor points and
functionality like getting and setting component state. As
GCS we used Spread [1]. In J2EE both SFSBs and EBs can
contain state. However, the state of EBs is always written
back to the database at commit time. Hence, committing
messages only contain SFSB state changes. We improved
the 1-1 algorithm as presented in [27] by parallelizing some
tasks. The 2PC solution does not change the TM but uses
wrapper objects to intercept the requests from the TM to the
databases. Our replication tool detects the execution pattern
depending on the requests it intercepts, and automatically
applies the corresponding algorithm.

Our performance evaluation analyzes the replication
overhead during normal processing using the ECperf bench-
mark [25]. The ECperf application is split into customer,
manufacturing, supplier and corporate domains. Thetrans-
action injection rate(IR) is an indicator of the load submit-
ted to the system (transactions per second). Results con-
tain the average response time oforder entrytransactions
of the customer domain in milliseconds, and the maximum
achievable throughput measured in business operations per



minute. Results are only measured over the steady state
phase (10 minutes) of each test run. We also analyzed
failover times but do not present them since the numbers
for all tested cases were similar to [27]. Our configuration
consists of one machine emulating clients, one web server
machine, two machines running JBoss application server
3.2.3., and one machine running the DB2 database system.
All machines were PCs 3.0 GHz Pentium 4 with 1 GB of
RAM) running RedHat Linux.

Our evaluation compares (1) a regular, non-replicated
JBoss server as baseline for comparison; (2) two JBoss
server replicas using our replication tool; (3) two JBoss
server replicas using JBoss’s own replication solution called
JBoss clustering. JBoss clustering propagates state to back-
ups on a component basis just before the component returns
from a method call. Hence, if several components are called
within one client request, several messages are sent. For
more detail see related work. For both (2) and (3) one server
was primary for all clients. We first looked at the 1-1, N-1,
and 1-N patterns using one database, and then look at the
1-1 pattern accessing several databases. We looked at the
patterns individually to understand the impact of the partic-
ular mechanisms responsible.

1-1 algorithm Figure 5(a) shows the average response
times of order entry transactions at increasing IR for the 1-1
execution pattern. Response times for the 1-1 algorithm are
40% better than the original implementation in [27]. At low
load, the new 1-1 algorithm adds 15 ms (15% overhead). As
a comparison, [21] also indicates around 15% overhead for
FT-CORBA (primary-backup) compared to non-replicated
CORBA. JBoss clustering adds around 120 ms (120% over-
head). The high overhead is due because it sends state after
each method invocation while our approach sends one mes-
sage per transaction. Response times for all setups increase
steadily with increasing load until saturation points which
is around 27 IR for the non-replicated JBoss, 23 for JBoss
clustering and the 1-1 algorithm.

N-1 algorithm Figure 5(b) shows the response times for
the N-1 execution pattern. We modified the ECperf im-
plementation so that each order entry transaction contains
on average 5 order requests. The figure does not show re-
sults for JBoss clustering since response times are five times
as high as in the 1-1 model. Response times are generally
higher than for the 1-1 model shown in Fig. 5(a) since sev-
eral client requests are included in one transaction. Com-
pared to no replication, the N-1-best-effort algorithm adds
again about 15% overhead while N-1-ordered adds 30%.
The latter has higher overhead since it propagates the or-
der in which database access takes place at the end of each
client request. Considering that these are five additional
messages, the overhead is quite small. This is true because
the messages are small and only sent with reliable delivery.
In regard to throughput, all configurations saturate much

earlier due to CPU overhead. N-1-ordered saturates at 8
IR, N-1-best-effort at 9 IR, and the non-replicated JBoss at
10 IR.
1-N algorithm Figure 5(c) shows the response times for
the 1-N execution pattern. We changed the ECperf im-
plementation such that each order entry request triggers
an outer transaction which on average contains three in-
ner transactions. Again, response times are generally higher
than for the 1-1 execution pattern since now each order en-
try request includes several transactions. In absolute times,
the 1-N algorithm takes more additional time than the 1-1
algorithm in Figure5(a) since we now have to send an ad-
ditional uniform-reliable message for each inside transac-
tion. In contrast, JBoss clustering adds the same time (120
ms) as in the 1-1 pattern since the replication mechanism is
not related to transactions. In terms of throughput, the 1-N
algorithm saturates at 21 IR, JBoss clustering saturates at
23 IR, and the non-replicated JBoss saturates at 25 IR. The
1-N algorithms saturates earlier than JBoss because of the
increased bookkeeping to guarantee exactly-once execution
and state consistency, and to detect ghost transactions.
1-1 with 2PC For this experiment we have not used the
ECPerf but a simpler evaluation. A client submits one
request to a SFSB which performs two database updates
that either access the same database (no 2PC) or different
databases (requiring a 2PC). Table 1 shows the average re-
sponse time at a load of 10 transactions per second, and the
maximum achievable throughput. Accessing one database,
the 1-1 algorithm adds 5.4 ms to the response time of the
non-replicated JBoss reflecting a 15% increase, while with
a 2PC, the 1-1 algorithm has an overhead of 8.3 ms (it has
to send an additionalpreparing message) but this reflects
an increase of only 8%. The maximum throughput for the
1-1 algorithm compared to the non-replicated case is around
90% with a 2PC and 86% when one database is accessed.
The 1-1 algorithm performs, in relative terms, better with
a 2PC than without because the total response times with a
2PC is so much higher than if no 2PC is necessary.

In summary, these experiments show that our solutions
in general incur little overhead for all typical execution pat-
terns. Our replication tool clearly outperforms JBoss’s clus-
tering mechanism in all cases in terms of response time, and
is similar in terms of saturation point.

7 Related Work

Looking at J2EE servers, JBoss [17] makes each replica
primary for some clients. Since state is propagated each
time a component returns from a method call, several mes-
sages might be sent for each client request. As a result, if
the primary crashes in the middle of executing a request
the state changes for some components might be propa-
gated but others not. Pramati [23] logs state changes in
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Figure 5. ECperf Response Time Comparison

Model Algorithm Response Time (ms) Tx numbers (per second)
one database Non-replicated JBoss 34.9 30

1-1 algorithm 40.3 26
more than one databaseNon-replicated JBoss 103.5 10

1-1 algorithm 111.8 9

Table 1. 1-1 execution accessing one or more than one database

the database and receives them upon recovery after a crash.
WebLogic [6] uses a single primary server replica, and only
propagates changes after commit. None of the systems sup-
ports advanced execution models and only Pramati provides
state consistency for the 1-1 pattern.

There exists many proposals for replication of CORBA
components, e.g., [8, 9, 22, 19, 12, 2]. Most of them do not
consider database access. [28] extend the CORBA based
fault-tolerant Eternal system [22] to work correctly with
a database backend tier. The transaction context within
the components is replicated, and duplicate requests to the
database are suppressed. However, component execution
has to be deterministic. [13] combine replication and trans-
actions for CORBA using an approach similar to the 1-1
algorithm. However, none of the approaches provides ad-
vanced execution patterns.

Phoenix [4, 3] for .NET handles the 1-1 pattern with
one database using checkpoints and request/reply logging.
Failover starts from the last checkpoint and applies logged
requests assuming piecewise deterministic behavior [11].

Outside of any concrete AS architecture, [15] provides
exactly-once execution for stateful AS for the 1-1 pattern
accessing one database. [14, 16] provide exactly-once se-
mantics forstatelessAS for the 1-1 pattern. Our algorithms
use similar mechanisms to check the status of database
transactions. We advance this existing work by looking at
stateful AS and advanced execution patterns, and by inte-
grating our solution into a real AS architecture.

There has been a lot of work on database replication.
However, the underlying model is quite different since it

does not consider state changes outside the database.

8 Conclusion

This paper presents a replication tool for AS servers that
is able to combine replication and transactions for advanced
execution patterns providing strong correctness properties.
Our solution does not require any special properties from
the component implementations, the clients or the database.
We have integrated our solution into the J2EE server JBoss,
but we believe that the main ideas can be applied to other
architectures. Our approach has comparable or better per-
formance than existing solutions while providing stronger
semantics for many different execution patterns.

Our current research looks at fault-tolerance if a web-
server is applied between client and AS. Any web-server
replication must be coordinated with our AS replication.
We are also currently extending our algorithms to allow
more than one primary in order to distributed client request
across several replicas.

References

[1] Y. Amir, C. Danilov, M. Miskin-Amir, J. Schultz, and
J. Stanton. The Spread toolkit: Architecture and per-
formance. Technical Report CNDS-2004-1, Cen. for Netw.
and Distr. Systems, Johns Hopkins Univ., 2004.

[2] R. Baldoni and C. Marchetti. Three-tier replication for FT-
CORBA infrastructures.Software – Practice and Experi-
ence, 33(8), 2003.



[3] R. Barga, S. Chen, and D. Lomet. Improving logging and
recovery performance in Phoenix/App. InInt. Conf. on Data
Engineering (ICDE), 2004.

[4] R. Barga, D. Lomet, and G. Weikum. Recovery guarantees
for general multi-tier applications. InInt. Conf. on Data
Engineering (ICDE), 2002.

[5] A. Bartoli, V. Maverick, S. Patarin, and H. Wu. A Frame-
work for Prototyping J2EE Replication Algorithms. InInt.
Symp. on Distrib. Objects and Applications (DOA), 2004.

[6] BEA Systems Inc.BEA WebLogic Server, release 7.0: Pro-
gramming WebLogic Enterprise JavaBeans, 2002.

[7] G. V. Chockler, I. Keidar, and R. Vitenberg. Group com-
munication specifications: A comprehensive study.ACM
Computing Surveys, 33(4), 2001.

[8] M. Cukier, J. Ren, C. Sabnis, D. Henke, J. Pistole, W. H.
Sanders, D. E. Bakken, M. E. Berman, D. A. Karr, and
R. E. Schantz. AQuA: an adaptive architecture that provides
dependable distributed objects. InSymp. on Reliable Dis-
tributed Systems (SRDS), 1998.
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