
A Framework for Prototyping
J2EE Replication Algorithms?

Özalp Babaoǧlu1, Alberto Bartoli2, Vance Maverick1, Simon Patarin1, Jakša
Vučković1, and Huaigu Wu3

1 Università di Bologna, Bologna, Italy
2 Università degli Studi di Trieste, Trieste, Italy

3 McGill University, Montreal, Canada

Abstract. In application server systems, such as J2EE, replication is
an essential strategy for reliability and efficiency. Many J2EE imple-
mentations, both commercial and open-source, provide some replication
support. However, the range of possible strategies is wide, and the choice
of the best one, depending on the expected application profile, remains
an open research question.
To support research in this area, we introduce a framework for proto-
typing J2EE replication algorithms. In effect, it divides replication code
into two layers: the framework itself, which is common to all replication
algorithms, and a specific replication algorithm, which is “plugged in”
to the framework. The division is defined by an API.
The framework simplifies development in two ways. First, it keeps much
of the complexity of modifying a J2EE implementation within the frame-
work layer, which is implemented only once. Second, through the API,
the replication algorithm sees a highly abstracted view of the components
in the server. This frees the designer to concentrate on the important is-
sues that are specific to a replication algorithm, such as communication.
We have implemented the framework by extending the open-source J2EE
server. Compared to an unmodified server, the framework adds a perfor-
mance cost of about 22%. Thus, it is quite practical for the initial de-
velopment and evaluation of replication algorithms. Several algorithms
have already been implemented within the framework.

1 Introduction

In application server systems, replication is an essential strategy for reliability
and efficiency. For example, there is a substantial literature on the replication of
CORBA component servers. Sun’s J2EE [1] is a more recent application server
architecture, now very widespread. Many J2EE implementations, both commer-
cial and open-source, provide some replication support. However, the range of
possible replication strategies is wide, and the choice of the best one, depending
on the expected application profile, remains an open research question.
? This work was partially supported by the European Commission under the IST

program of the 5th Framework through Project ADAPT (IST-2001-37126).

To design and evaluate a replication algorithm for J2EE (or any practical
component architecture) requires a substantial investment in development. To
ease this process, we introduce the ADAPT framework for prototyping J2EE
replication algorithms. It factors the task of developing a replication algorithm
into two layers: the framework itself, which handles all the detailed interactions
with the underlying server code, and the specific replication algorithm, which
is plugged into the framework. The framework is implemented once and for all,
allowing the developers to concentrate on the relevant details of the specific
replication algorithm.

1.1 J2EE and replication

A J2EE application is deployed as a set of components. Components are objects
whose lifecycle and invocation is managed by the server, rather than directly
by the developer. The developer writes deployment descriptors specifying such
properties as transactional behavior, security, and persistence. At runtime, a
client invokes a component through a special lookup mechanism; the server in-
tervenes in each such invocation, to enforce the rules given in the component’s
descriptor.

In J2EE, the components are called EJBs (“enterprise Java beans”). The
principal categories of EJB are “entity beans”, corresponding to objects in the
business data model, and to rows in the underlying database; and “session
beans”, corresponding to client connections. Session beans are further divided
into stateless and stateful types.

In addition to client-server applications, we are also interested in implement-
ing web services. J2EE specifies that this may be done by using a stateless session
bean as a web service endpoint ([2], section 5.5). Also, Axis [3], a widely-used
SOAP engine which forms the basis of our web service support, provides an
alternative deployment model. In the Axis model, a web service endpoint is im-
plemented by a special type of component, simpler than an EJB, but likewise
deployed with a declarative descriptor. We support both models; the replication
algorithm sees them as different component types (Section 2.1).

Fig. 1 shows a schematic J2EE application, consisting of components of sev-
eral types. The one J2EE component type we have not handled so far is the
message-driven bean. (See [2], section 15.) We believe that our framework can
be applied to message-driven beans as well, and we plan to add them in a future
version.

The main advantage that the J2EE component model offers to the developer
is that it can partially automate important aspects of the application’s logic.
The developer expresses transactional logic, for example, in simple, centralized
declarations, rather than in many lines of scattered imperative code.

The component model also has benefits for the development of replication
support. It requires the developer to keep application state within clearly-declared
objects; the invocations of these objects are intercepted by the server; and trans-
actions are handled by a central transaction manager with a well-known API.
Together, these constraints mean that in a J2EE system, all the application

Session
bean

Axis
service
object

Entity
bean

Entity
bean

SOAP/HTTP

RMI

J2EE server

Fig. 1. J2EE components of several types, executing in a single server. Java clients
invoke beans through the RMI remote-procedure-call protocol. Web service clients
invoke Axis service objects through SOAP messages sent by HTTP. In this example,
both these components invoke entity beans, which are mapped to persistent storage.

events of particular interest for replication are already “exposed” to the applica-
tion server so that, in principle, a replication algorithm can observe and intervene
in them.

However, an application server is a complex piece of code, and modifying it is
not easy. Further, much of the work of modifying the server is common between
different replication algorithms: most algorithms, for example, will need to inter-
cept component invocations from outside the server. Finally, the modifications
will need to be redone or re-examined for every new version of the underlying
application server.

For all these reasons, we have chosen to develop J2EE replication strategies
in two layers (Fig. 2). The lower layer is a common framework; the specific
replication algorithm runs on top. The interaction between the layers is defined
by an API. Through the API, the replication algorithm sees a simplified view
of the components in the system and the invocations between them. It does not
see the underlying J2EE implementation.

Bean

Replication algorithm

ADAPT framework

J2EE server

Communication

Fig. 2. A replication algorithm is layered on top of the ADAPT framework. When a
component is invoked, control passes to the replication algorithm before reaching the
component. The algorithm may perform other actions, such as communicating with
other replicas, before or after the invocation.

Thus, the specific replication algorithm is a self-contained module, coded
more simply than if the server were modified directly. And when a new version of
the server is released, the framework is ported forward first; once the framework
is ready, specific algorithms can be ported with minimal changes.

1.2 Design goals

The primary goal of the replication framework is to enable the development of
the widest possible range of replication algorithms.

At the same time, it avoids favoring any particular replication technique.
Thus, there are some important problems in replication for which the frame-
work does not provide direct support. In particular, it does not specify a model
for communication between replicas, or for the notion of a cluster. However, there
are widely used abstractions and software packages for handling these problems.
Most of the algorithms we have developed, for example, use the group commu-
nication model, specifically the JBora group-communication library developed
at the University of Trieste [4].

For the same reason, we have disabled the clustering support provided by
JBoss [5]. Developers of new replication algorithms are free to adapt JBoss’s
replication design, and even aspects of its implementation, but they are equally
free to develop alternatives.

Finally, another goal has been to remain as close as possible to the original
definition of J2EE. For the application developer, in particular, we want to add
as little as possible to the requirements already set forth in the J2EE specifica-
tion.4 For the developer of replication algorithms, we guarantee that the default
behavior of the system—what it does if the algorithm does not prevent it—is
the normal behavior of a non-replicated J2EE server.

1.3 Outline

In Section 2, we present the design of the framework, and the elements of the
API. Section 3 describes the implementation, based on the JBoss open-source
J2EE server, and evaluates its performance. In Section 4 we conclude the paper,
discussing related work and some of the replication algorithms that have been
developed within the framework.

2 Design of the ADAPT replication framework

2.1 Uniform model of components

The ADAPT framework API classifies components in three levels:

4 As we will see in Section 2.7, we have had to add a few requirements for component
state transmission.

ComponentKind is the broadest classification. There are just a few kinds, fixed
by the framework implementation: entity bean, stateful and stateless session
beans, web service object. As we add support for other components (such as
message-driven beans), we will extend the set of ComponentKinds.

ComponentType is a kind plus a name, specifying a particular “class” within
the kind. The number of types depends on the applications deployed on the
server. There is one for each deployed bean and web service.

ComponentHandle refers to a specific component instance. It consists of a Com-
ponentType plus an instance identifier specific to that type. With an entity
bean, the identifier is the primary key; with a stateful session bean, it is
the session ID. The number of distinct handles depends on the number of
components invoked by the application.

All these classes may be transmitted between replicas. They also support
comparison: two ComponentHandles, for example, test equal if and only if they
refer to the same component instance.

We do not provide access to the underlying Java object implementing the
component. Instead, we provide a model of component state (Section 2.7).

2.2 Interception of invocations

Client

Server replication algorithm

Server

321

Fig. 3. Key interception points in the course of an invocation between two components.
1. Just before control leaves the caller. 2. The stub: server-specific logic executed on
the client side. 3. On the server side, before transferring control to the component.

In Fig. 3, we show a component invocation, with markers at three key points
for replication. At each point, the replication algorithm may intervene, perform-
ing any computation or communication before or after continuing. In fact, it
does not have to continue execution along this path; it may throw an exception,
or return a response computed elsewhere.

1 Just before control leaves the caller. If the caller is replicated, the replication
algorithm may synchronize with other replicas before proceeding.

2 The stub, i.e., client-side logic belonging to the server replication algorithm.
It may resend requests, fail over to another server host, etc.

3 Just before control is transferred to the target bean. The bean is ready for
the invocation, but also for other operations such as reading and writing
state.

If the caller is replicated as well as the server, then there are two replication
algorithms in this scenario. At point 1, control is still in the domain of the
caller’s replication algorithm. At point 2, even though execution is still on the
calling host, logical control belongs to the callee’s algorithm. In particular, if
the stub detects a server failure, it can fail over to another server host. The
failover mechanism depends entirely on the server’s replication algorithm, not
the caller’s. (We indicate the domains of the two algorithms with shading.)

The replication algorithm expresses the logic at each of these points by im-
plementing an interface. The framework API defines a “local” interface, for logic
in the local server, and a “stub” interface, for logic referring to a remote server.
When the framework intercepts execution at points 1 and 3, it passes control
to the local interface, implemented respectively by the replication algorithms
of the client and the server. At point 2, it passes control to the stub interface,
which runs on the caller but provides invocation logic for the server’s replication
algorithm.

In an EJB invocation, the stub interface is actually downloaded from the
remote server during EJB lookup. In a web service invocation, though, the client
cannot download code from the server (and would not trust it if it did). In a real
web service application, server-specific logic on the client side would be spelled
out in the service contract, and implemented by the client. For convenience in
prototyping, though, we maintain the distinction between the two interfaces even
with web services.

CMT
Component resolution

3b3a

Fig. 4. Within interception point 3, we distinguish early and late stages. At 3a, the
server has just taken control, but it has not resolved the component reference, or set
up container-managed transactions, security, or any other EJB invocation properties.
At 3b, the component is ready for invocation.

For EJBs, we distinguish two interception points on the server side, before
control reaches the component (Fig. 4). The first point (3a) comes immedi-
ately after control reaches the server, before the component reference has been
resolved. Breaking here allows the replication algorithm to instantiate the com-
ponent itself, if necessary. The second point (3b) comes just before control passes
to the component—after the reference has been resolved, and all the EJB prop-
erties, such as security and transactions, have been set up. At this point, the
replication algorithm can get and set the component’s state, attach a listener to
the transaction, etc.

For web services, there is no useful distinction to be made between these two
points, because the invocation model for Axis objects is much simpler than for
EJBs. Thus, we provide interception only at 3b.

2.3 Requests and responses

In the ADAPT invocation API, a Request is passed to a component, yielding
a Response. For example, at interception point 3b, when a component is about
to be invoked, the ADAPT framework calls a method in the local replication
interface:

Response call(ComponentHandle component, Request request);

To invoke the component, the replication algorithm calls the corresponding
method in ComponentHandle:

Response call(Request request);

Generally, Request and Response are opaque to the replication algorithm.
However, in a Request, we allow the replication algorithm to read the name of the
method that is being invoked (or, for a web service component, the operation).
This permits the algorithm to classify the methods of a component, and treat
them differently. For example, if it has access to more information about the
application (perhaps an extra descriptor provided by the developer), it might
distinguish between read-only and read-write methods.

When the invocation completes normally, the Response encapsulates the
return value (or, for a web component, the SOAP response). In this case, the
replication algorithm cannot examine the content. When the invocation throws
an exception, though, this is wrapped in a special Response which provides the
details of the exception and identifies its source.

Application The exception was thrown by the component, i.e., by the developer-
written code within the application. In this case, the replication algorithm
should not examine the exception details, but should simply pass the Res-
ponse back, where it will be handled by the calling component.

System Thrown by the system or framework, for example when the server
crashes. Client-side replication code can catch this and “fail over” to another
server before returning to the caller.

Replication algorithm Thrown by the replication algorithm, presumably from
some other point in the chain of invocation. In this case, the replication algo-
rithm is free to examine the exception details and handle them as it chooses.

Headers. Both Request and Response can be tagged with “headers”. These
are arbitrary key-value pairs, which are transmitted along with the content of
the message, but they are visible only to the replication algorithm. The key must
be a string; the value may be of any class that can be serialized in the invocation.

A common use for headers is to tag each request with a unique ID. This is
essential, for example, if the algorithm is to guarantee that each request will
be executed exactly once, despite retransmissions and communication failures.
Generally, the ID is set by the client-side stub (interception point 2), before the
request is sent the first time.

2.4 Transactions

J2EE models transactions with a standard API ([1], chapter 4). This defines a
TransactionManager or coordinator, which is called by clients, application com-
ponents, and the server itself, to begin and end transactions and to register par-
ticipants. And it defines a Transaction, which may be associated (one-to-one)
with a thread. If so, transactional operations in that thread, such as database
access and EJB invocation, are logically contained within the transaction.

To let the replication algorithm follow the association of component invo-
cations with transactions, we provide two framework methods. If the bean uses
container-managed transactions, then at interception point 3b (Fig. 4), the trans-
action will already have been associated with the thread. The algorithm can look
it up through the TransactionManager. If the component manages transactions
itself, through direct calls to the coordinator, the framework notifies the algo-
rithm through a callback.

To track the later commit and rollback of a transaction, the replication algo-
rithm may attach a listener, using interfaces defined by J2EE. One such interface
is notified after the transaction has committed or rolled back; another partic-
ipates in the two-phase commit, so it is notified during the prepare phase as
well.

If the replication algorithm wants to intervene more actively in local trans-
action processing, the framework allows it to “wrap” the entire Transaction-
Manager, intercepting every transactional event. It may choose to pass the event
on to the underlying TransactionManager, or to perform its own distributed
logic, or both.

Another approach would have been to open the internals of the Transaction-
Manager to the replication algorithm. However, this would have meant choosing
a particular implementation. Instead, we chose to interact with the Transac-
tionManager only through public APIs; thus, as with a non-replicated server, it
remains possible to plug in any valid implementation.

2.5 Component lifecycle

Components are created by application code, whether directly from the client
or indirectly through other components. An EJB is created by a call to one of
the create methods of its home interface. A web service object is created by
the Axis engine automatically, in response to the HTTP request. Either way, the
framework notifies the local replication interface after the component has been
created, passing it the ComponentHandle representing the component, plus any

creation arguments. Replication code at another site may repeat the creation,
using a create method of the ComponentHandle.

The client may also look up persistent components (entity beans) by their
primary keys. When they are found, the server instantiates them, and then the
framework notifies the replication algorithm that they have been instantiated.

When the client deletes a component, the framework notifies the replication
algorithm before the deletion takes place. The algorithm may not prevent the
deletion, but it can perform any related processing, such as reading state or
synchronizing other replicas, before the component disappears.

While an entity bean is in memory, the J2EE server treats it as a cached copy
of the corresponding persistent data. If its state is consistent with the database,
the server may choose to flush it from memory. The ADAPT framework allows
the replication algorithm to block a component from being flushed, forcing it to
remain in local memory.

Finally, for stateful session beans, J2EE defines passivation, the transfer of in-
memory state to storage managed by the server, allowing the component instance
to be garbage-collected or reused.5 From the point of view of the replication
algorithm, this is not an important change in the component state: the server
is still managing the component, and references to it remain valid. Thus we do
not expose passivation to the replication algorithm through the API.

EJB lookup mechanisms. We also allow the replication algorithm to intercept
the lookup and instantiation mechanisms of EJB even before the component itself
is created.

First, J2EE defines a naming service, JNDI. Each component is registered
with the JNDI service of its local server. To find the component, the client
connects to the service and looks up the component’s name.

We allow the client stub to redirect the JNDI lookup, by intercepting the
creation of the JNDI Context interface on the client side. The replication algo-
rithm may substitute a Context referring to a different server, or even provide
a custom implementation of the interface.

Second, the JNDI lookup yields the home interface for the component, which
provides methods to create new instances and to find existing ones. The invo-
cations of these methods are intercepted on both the client and server sides,
at points 2 and 3 in Fig. 3. On the client side, the replication algorithm may
redirect the calls to another server; on the server side, it may perform related
actions (such as deployment) before allowing the server to proceed.

2.6 Deployment

A component cannot be instantiated on a server unless it is deployed there,
that is, its code, configuration, etc., are available. Before replicating components
across a cluster, an algorithm must ensure that they are deployed on all servers.
5 The term “passivation” is also used for entity beans, but it refers to the cache flushing

mentioned above.

In J2EE ([1], chapter 8), components are deployed in archive files, with a
specified filename extension and internal structure. Typically, this file is “deliv-
ered” to a server by being copied to a specified directory. The server checks the
directory at startup, and at regular intervals afterward.

Our API provides a simple model for deployment information. Each compo-
nent archive is represented by an identifying handle and a content object, which
can be transmitted together or separately. At startup, the replication algorithm
can query the framework for all the units that are currently deployed. During
runtime, the framework notifies the replication algorithm whenever a new unit
is deployed. The algorithm can transmit the handle to its peers, which can test
whether the handle is deployed locally. If not, they can deploy it through the
framework, by providing the handle and the content object.

2.7 Component state

A correct replicated server must generate the same responses as a non-replicated
server, for the same series of requests. To achieve this, one strategy (active
replication) is to run the same computation in parallel on all replicas. But many
common strategies repeat only parts of the computation. To ensure correctness,
they must manipulate the state of the servers in the cluster. For example, in a
primary-backup scheme, the replication algorithm keeps the state of the backup
servers in sync with the primary. If the primary crashes, execution fails over to
one of the backups. Since this backup is in the same state as the primary, it can
continue processing requests, yielding the same responses.

The framework API provides a view of server state based on components.
The state of a server is composed of the state of all the components that are
active. The framework provides methods to test whether a component has state,
and to get and set the state. In the API, the state of a component is an opaque
serializable object, which can be sent between replicas.

To implemente these methods for EJBs, we took advantage of existing con-
tracts between the developer and the container. To get the state of a stateful
session bean, for example, the framework uses the passivation mechanism, saving
the state to an array in memory instead of persistent storage. For entity beans,
the framework reads and writes the attributes defined by container-managed
persistence.

For Axis web service objects, however, the existing contract with the devel-
oper does not include any state methods. Thus, to support state operations,
we add an extra requirement: the service class class must implement the Java
Serializable interface. The state value is simply the serialized form of the ob-
ject itself. When the replication algorithm sets the state of an Axis component,
the framework replaces the underlying object with a fresh instance.

State transfer. In many algorithms, when a server joins a cluster, one of
the other servers transfers a large collection of component state to the new
one. Request processing must often be blocked during this interval, on the new

member or on the one that is sending state. To support this, we provide suspend
and resume methods, to block and unblock requests on the local server.

2.8 Server addresses

A J2EE server receives TCP connections at several ports: for RMI invocation,
JNDI lookup, and HTTP requests. When a client fails over, it must connect
not only to a different IP address, but also to the appropriate ports at the new
server.

To make failover simpler and more abstract for the replication algorithm, we
supply a ServerAddress class that encapsulates the IP address and ports for
a server. Within each server, the framework supplies the local ServerAddress.
The replication algorithm can share addresses between the servers in a cluster,
and transmit a set of addresses to the client, using Response headers or the
serialization of the EJB invocation stub.

For testing, it is possible to run several servers on one host. In this case, their
ServerAddresses have the same IP address but different ports.

3 Implementation

We have implemented the replication framework by building on the open-source
J2EE server JBoss [6]. For web services, we used the SOAP engine Axis [3],
which is integrated into JBoss.

In each case, the existing architecture provides hooks for intercepting and
restarting invocations. JBoss’s EJB implementation is structured around “in-
terceptors”, a pattern which is built up into invocation “stacks” described by a
configuration file. Axis supports the handler model defined by JAX-RPC [7]. A
configuration file defines the sequence of handlers to be executed before a service
request is finally delegated to the service object.

In each case, we were able to customize the implementation without modify-
ing the Java source files of the server. For both JBoss and Axis, we modified the
configuration files, inserting our own interceptors and handlers into the existing
invocation paths. This separation of our code from the server will make it easier
to port the framework to future server versions.

3.1 Performance

To evaluate the performance of the framework, we used the ECperf benchmark [8]
provided by Sun. The benchmark uses a standard manufacturing / supply chain
/ inventory problem as an example to exercise the numerous features defined in
the J2EE specification. The benchmark consists, for one part, in several bean
archives to be deployed on the application server and a database schema to
be instantiated and populated, and, for the other part, in a configurable client
application that uses those previously deployed beans to stress the server. The
main configuration variable is the target transaction rate at which the client

will try to make the server operate by creating an appropriate number of inde-
pendent client threads. Once the test is completed, the client software collects
statistics from the different threads and extracts an average “business operations
per minute” computed over the steady state phase of the run (the ramp-up and
ramp-down phases are ignored).

In our experimental setup, the JBoss application server and the PostgreSQL
database management system run on a single 2.4 GHz Pentium IV Linux machine
with 1 GB of RAM (which is otherwise idle). Clients are executed on a different
machine, located on the same local area network.

In this environment, we measured the performance of two configurations.
The first was JBoss, without the ADAPT framework (and without the JBoss
replication mechanism). The second was the ADAPT modified configuration,
with a “dummy” replication algorithm that causes it to behave as a normal
non-replicated server. The results of this experiment are shown in Fig. 5.

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 5 10 15 20 25 30

B
us

in
es

s
O

pe
ra

tio
ns

 (p
er

 m
in

ut
e)

Target Transaction Rate (per second)

Target
JBoss

JBoss+Adapt

Fig. 5. Experimental results of the ECperf benchmark run against an unmodified ver-
sion of JBoss and against the ADAPT framework. The target line shows expected
throughput according to the chosen transaction rate.

The general shape of both curves is the same: the number of operations
increases linearly with the target transaction rate until the server becomes over-
loaded. After this point, some transactions begin being aborted, due to timeout
or contention on the database management system. This overload landmark is
reached at 21 transactions per second for unmodified JBoss, and at 18 trans-
actions per second for the ADAPT configuration. The throughput maxima are
2105 and 1800 business operations per minute respectively. In other words, the
penalty for adding the framework is a 22% drop in throughput. One should also
note that beyond the overload landmark, performance degrades more steeply in
the ADAPT configuration.

Clearly, adding the framework has a real impact on the server. However,
at 1800 ECperf business operations per minute, the performance is still quite

practical, enabling developers to run realistic benchmarks against their prototype
replication algorithms.

4 Conclusion

We have presented a framework for prototyping replication algorithms for J2EE
application servers. We have implemented the framework by modifying the open-
source JBoss application server. The modifications add a performance cost of
about 22%. We believe this cost is quite acceptable for prototyping, because the
development of replication algorithms is much easier within the framework.

If an algorithm performs well in this prototyping environment, developers
may consider reimplementing it by direct modification of the server. However,
this is unlikely to improve performance by as much as 22%. First, some of the im-
plementation mechanisms of the framework, such as interception of invocations,
will be required in a “direct” implementation as well. But more importantly,
replication algorithms add other substantial performance costs, such as inter-
server communication.

Several other recent projects have related goals. Bennani et al. [9] present a
replication algorithm implemented with CORBA portable interceptors and Java
serialization. We have used similar implementation mechanisms for the frame-
work layer, but built on them to give the replication algorithm a more abstract
view of the system. Further, our framework provides some important features
which they found lacking in the CORBA interceptor mechanism. In ADAPT,
replication algorithms may block the processing of a request, returning a response
computed elsewhere. And they are free to create threads and communicate with
one another, using all the mechanisms of J2EE.

Marangozova and Hagimont [10] present a model for CORBA component
replication. As in our work, they separate replication concerns from the appli-
cation and from the underlying system. The main difference is that they define
replication policies at the level of the component. ADAPT supports a single
policy on each server. Since the replication algorithm sees the entire set of com-
ponents in the server, it can coordinate replication actions such as state trans-
mission across components. (But since it sees the types of the components, it
can also define per-component replication policies if desired.)

Several practical replication algorithms have been implemented within the
ADAPT framework. Our colleague Milan Prica at the University of Trieste has
used the framework to implement a version of the JMiramare algorithm described
by Bartoli et al. [11], focusing on web service components. And one of the authors
(Wu) has used the framework as the basis for a new replication algorithm [12],
focused on session beans, providing strong guarantees of consistency and exactly-
once execution.

Version 1.0 of the framework has been released on the SourceForge open-
source hosting system, at http://j2ee-adapt.sourceforge.net.

References

1. Shannon, B.: JavaTM 2 Platform Enterprise Edition Specification, v1.4. Sun Mi-
crosystems, Inc. (2003) http://java.sun.com/j2ee/1.4/docs/.

2. DeMichiel, L.G.: Enterprise JavaBeansTM Specification, Version 2.1. (2003)
http://java.sun.com/products/ejb/docs.html.

3. Apache Web Services Project: Axis SOAP library, version 1.1 (2003)
http://ws.apache.org/axis.

4. Bartoli, A., Prica, M., Antoniutti Di Muro, E.: Reliable communication (2004)
ADAPT project deliverable describing the JBora toolkit.

5. Labourey, S., Burke, B.: JBoss Clustering. The JBoss Group. (2002)
6. JBoss Group: JBoss 3.2.3 (2003) http://www.jboss.org/.
7. Chinnici, R.: JavaTM API for XML-based RPC: JAX-RPC 1.1. (2003)

http://java.sun.com/xml/jaxrpc/index.jsp.
8. Sun Microsystems, Inc.: ECperfTM specification: 1.1 final release (2003)

http://java.sun.com/j2ee/ecperf/.
9. Bennani, T., Blain, L., Courtes, L., Fabre, J., Killijian, M., Täıani,

F.: Implementing simple replication protocols using CORBA portable
interceptors and Java serialization. In: International Conference on
Dependable Systems and Networks (DSN-2004), Florence, Italy (2004)
http://www.laas.fr/˜ftaiani/ressources/DSN2004-final-cprght.pdf.

10. Marangozova, V., Hagimont, D.: An infrastructure for CORBA component
replication. In: Proceedings of the First International IFIP/ACM Working
Conference on Component Deployment (CD 2002), Berlin, Germany (2002)
http://sardes.inrialpes.fr/papers/files/02-Marangozova-CD.pdf.

11. Bartoli, A., Prica, M., Antoniutti di Muro, E.: A replication framework
for program-to-program interaction across unreliable networks and its imple-
mentation in a servlet container. Technical report, Dipartimento di Elet-
trotecnica, Elettronica, Informatica, University of Trieste, Trieste, Italy (2003)
http://adapt.adapt.cs.unibo.it/papers/AntonBartPrica.pdf. Submitted for publi-
cation.

12. Wu, H., Kemme, B., Maverick, V.: Eager replication for stateful J2EE servers. In:
Proceedings of the International Symposium on Distributed Objects and Applica-
tions (DOA 2004), Larnaca, Cyprus (2004) 1395–1412

