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ABSTRACT
Many cluster based replication solutions have been proposed
providing scalability and fault-tolerance. Many of these so-
lutions perform replica control in a middleware on top of
the database replicas. In such a setting concurrency con-
trol is a challenge and is often performed on a table ba-
sis. Additionally, some systems put severe requirements on
transaction programs (e.g., to declare all objects to be ac-
cessed in advance). This paper addresses these issues and
presents a middleware-based replication scheme which pro-
vides the popular snapshot isolation level at the same tuple-
level granularity as database systems like PostgreSQL and
Oracle, without any need to declare transaction properties
in advance. Both read-only and update transactions can
be executed at any replica while providing data consistency
at all times. Our approach provides what we call “1-copy-
snapshot-isolation” as long as the underlying database repli-
cas provide snapshot isolation. We have implemented our
approach as a replicated middleware on top of PostgreSQL
replicas. By providing a standard JDBC interface, the mid-
dleware is completely transparent to the client program.
Fault-tolerance is provided by automatically reconnecting
clients in case of crashes. Our middleware shows good per-
formance in terms of response times and scalability.

1. INTRODUCTION
Cluster based data replication is used in many data in-

tensive applications for fault-tolerance and scalability. New
replicas are added to the cluster to handle increasing load,
and if replicas fail, available replicas are able to take over.
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The challenge of replication is replica control, i.e., keep-
ing copies consistent. Basically all recent solutions perform
reads on one replica and writes on all (available) replicas
since this performs best for read-intensive applications. The
well-known paper of Gray et. al [16] categorizes replication
strategies by two parameters. The first parameter deter-
mines where updates take place. In a primary copy ap-
proach, each object has a primary replica which performs
all updates and propagates them to the secondary replicas.
Using update everywhere, each replica accepts updates. The
second parameter determines when replicas coordinate. In
an eager approach updates are executed at all replicas before
transactions commit while lazy approaches delay coordina-
tion until after transactions commit. Each of the approaches
has its own problems. Eager approaches delay transaction
execution, and lazy approaches have consistency problems
if sites fail before propagating changes. Primary copy ap-
proaches require updates to be forwarded to the primary,
and update everywhere requires complex concurrency con-
trol or conflict resolution. Most commercial database sys-
tems provide a suite of in-house replication solutions where
eager approaches are mainly developed for high availability
and lazy approaches for fast local access and scalability.

The detailed analysis of [16] comes to the conclusion that
eager solutions generally do not scale and that both ea-
ger and lazy update everywhere have unacceptable conflict
rates. Their analysis has motivated many researchers to re-
visit the issue of replication, e.g., [3, 4, 7, 8, 9, 10, 12, 17,
18, 20, 21, 23, 24, 25, 27, 29]. The principle goal of most of
these new algorithms is to eliminate the problems associated
with the category to which the solution belongs to, in order
to provide both 1-copy-serializability (or other well defined
isolation levels), and achieve good performance. One com-
mon approach for cluster based replication is to provide a
hybrid propagation that is both eager and lazy. The commit
is returned to the client once the transaction is committed at
one replica but before all replicas have executed the trans-
action. However, transactions do coordinate before commit.
This avoids loss of transactions in the failure case, avoids
the complexity of conflict resolution needed in lazy update
everywhere schemes, and at the same time provides short
response times. The overhead for such hybrid approaches is
acceptable when communication is fast [3, 17, 20, 34].

Although many new solutions have been proposed, only
some of them have been validated by real implementations.
Many implementations, both from research and industry,
are middleware based where replication is controlled in a
layer between clients and database replicas (e.g., [3, 7, 9,



15, 20, 27, 29]. This simplifies the development since the in-
ternals of the database are mostly inaccessible. And if they
are, they are complex and difficult to change. Furthermore,
middleware solutions can be maintained independently of
the database system, and can potentially be used in het-
erogeneous settings [27]. A main challenge, however, is to
coordinate replica control with concurrency control. Most
update everywhere systems use locking, and since the SQL
statements visible at the middleware do not necessarily in-
dicate the exact records to be accessed, locking is table or
predicate based. Additionally, many systems have special
requirements. For instance, in [3] a transaction has to indi-
cate all tables it will access at the start. In [20], the programs
containing the transactions must run in the same context as
the middleware. Many primary copy solutions rely on the
concurrency control of the underlying database system (e.g.,
[8, 10, 12, 24, 27, 29]). However, in order for the middleware
to forward update transactions to the primary and distribute
read-only load over the secondary copies transactions should
indicate at start time whether they are read-only (e.g., by
using Connection.setReadonly() in JDBC).

In this paper, we propose SI-Rep, a replication middle-
ware that has all the advantages of middleware approaches
but avoids the restrictions of existing solutions. We follow
a hybrid, update everywhere approach. Applications do not
need to be adjusted but simply use the standard database in-
terface. Furthermore, SI-Rep implements concurrency con-
trol on a record level. Our approach is useful for applica-
tions that require fault-tolerance and data consistency at all
times even if update rates are considerably high while still
requiring fast response times and high throughput.

Our approach uses snapshot isolation (SI) as isolation
level [5]. SI is becoming more widely available in commer-
cial database systems. With SI, a transaction T reads from
a snapshot of the database which contains all updates that
were committed at the time T started. Only conflicts be-
tween write operations are detected, and if two concurrent
transactions want to update the same object, one will be
aborted. The popularity of SI is due to the fact that reads
never conflict with writes since they read from a snapshot.
Compared to locking, SI is especially attractive for middle-
ware based concurrency control. Firstly, read operations do
not need to be tracked. Secondly, conflicts on write opera-
tions can be detected in an optimistic way after transaction
execution. These are important properties since the middle-
ware only sees the SQL statements but does not know the
records which are going to be accessed before execution.

Our approach performs concurrency control at two lev-
els. We assume the underlying database replicas provide SI,
and SI-Rep detects conflicts among transactions running at
different replicas. Transaction execution is as follows. A
transaction is first executed at one replica. At the end of
execution we extract the updated records in form of a write-
set. Writeset extraction is a standard mechanism in many
commercial replication solutions (e.g., [22]) implemented via
triggers or log-sniffing. Although commercial systems usu-
ally export writesets only after commit, the functionality
per se exists, and we provide a pre-commit extraction sim-
ilar to the ones developed in other research prototypes [20,
27]. After retrieving the writeset, SI-Rep performs a valida-
tion to check for write/write conflicts with transactions that
executed at other replicas and that have already validated.
If validation succeeds, the transaction commits at the local

replica and the writeset is applied at the remote replicas in
a lazy fashion. Otherwise it is aborted at the local replica.

In this paper, we follow a stepwise approach to explore
our solution. We first develop a formalism that allows us to
reason about SI in a replicated system (Section 2). Then, we
present a simple algorithm providing SI at the global level
using a centralized middleware (Section 3). Then we ana-
lyze how database systems actually implement SI (Section
4). This allows for optimization of our basic solution but
also requires some adjustments in order not to run into dead-
locks. We have implemented SI-Rep on top of PostgreSQL
(Section 5). Our implementation is decentralized, that is,
a middleware replica is running in front of each database
replica. A client can connect via standard JDBC to any
replica and is automatically failed over to another replica in
case of crash. Middleware replicas communicate through a
group communication system providing a total order mul-
ticast. Writesets are multicast to all middleware replicas
which perform validation in the total order writesets are re-
ceived in order to guarantee that all replicas make the same
validation decisions. Experiments show that our approach
has very good performance (Section 6). Related work and
conclusions are presented in Sections 7 and 8.

2. SNAPSHOT ISOLATION IN A
REPLICATED SYSTEM

In this section, we introduce some formalism that allows
us to reason about SI in replicated systems. We follow con-
cepts introduced in [1, 5, 14, 31, 30]. A transaction Ti starts
with a begin bi, followed by a sequence of read ri(x) and
write wi(x) operations on objects x, and terminates with a
commit ci or an abort ai. For simplicity of description, we
assume a transaction does not read an object x after it has
written it and it reads and writes each object at most once1.
We denote as readset RSi the set of all objects read, and as
writeset WSi the set of all objects written by Ti. We say a
transaction Ti executes before Tj (and Tj executes after Ti),
if Ti commits before Tj starts. If Ti neither executes before
or after Tj , then Ti and Tj are concurrent.

2.1 Snapshot Isolation Schedules
In order to provide SI, the database system maintains sev-

eral versions of each object. Whenever a transaction writes
an object x it creates a new version. When a transaction Ti

reads x, it reads the last committed version of x as of start
of Ti. That is, Ti reads the version created by transaction Tj

such that Tj executes before Ti, and there is no other trans-
action Tk that also wrote x, executes before Ti and commits
after Tj . Furthermore, if transaction Ti wants to write ob-
ject x, and there is a concurrent transaction Tj that wrote x
and already committed, then Ti aborts. In the following, by
indicating that two transactions conflict we mean that they
have write operations on the same object.

Our goal is to define as an SI-schedule an execution that
is allowed by a snapshot isolation scheduler. Since SI does
not provide serializable schedules in the classical sense (see
[5, 1, 14]), and reads might access older versions, defin-
ing a schedule becomes more difficult. For example, as-
sume an initializing transaction T0 creates a version of each
object. Now assume the set of transactions T = {T1 =
(b1, r1(x), w1(x), c1), T2 = (b2, r2(y), r2(x), w2(y), c), T3 =

1Our implementation does not impose these restrictions.



(b3, w3(x), c3)}. The following shows a possible execution of
these transactions under a SI-scheduler reflecting the physi-
cal time at which operations take place. We label each data
version read with the transaction that created it.

b1, r1(x0), b2, r2(y0), w1(x1), c1, b3, w3(x3), c3, r2(x0), w2(y2), c2

Although r2(x0) takes place physically very late, it takes
place logically just after the begin of T2 since transactions
read from a snapshot. Also, since write operations are not
visible before commit, they take place logically just before
commit. Hence, we can rewrite above schedule to

b1, r1(x), b2, r2(y), r2(x), w1(x), c1, b3, w3(x), c3, w2(y), c2

where a read r(x) reads what the last committed w(x) wrote
before the read. In fact, given the set of transactions with
corresponding read and writesets, the above schedule can be
shortened to a sequence of begin and commit operations:
b1, b2, c1, b3, c3, c2.
bi of transaction Ti implicitly indicates when the read opera-
tions of Ti take place, and ci implicitly indicates the time the
write operations take place. We call this example schedule
SE and use it later. This motivates the following definition.

Definition 1 (SI-Schedule). Let T be a set of com-
mitted transactions, where each transaction Ti is defined by
its readset RSi and writeset WSi. An SI-schedule S over
T is a sequence of operations o ∈ {b, c}. Let (oi < oj) ∈ S
denote that oi occurs before oj in S. S has the following
properties. (i) For each Ti ∈ T : (bi < ci) ∈ S. (ii) If
(bi < cj < ci) ∈ S, then WSi ∩ WSj = ∅.

A similar definition has been made in [14] where it is
called a scheduler oriented history. For simplicity of defini-
tion we only consider committed transactions2. When rea-
soning about the algorithms, we of course, consider aborts.
The above SE schedule can only be an SI-schedule if T2’s
writeset neither overlaps with T1 nor T3’s writeset.

In classical serializability theory, the equivalence of two
schedules is an important concept, and both conflict- and
view-equivalence are well known equivalence criteria. We
can reason in a similar way about SI-schedules.

Definition 2 (SI-Equivalence). Let S1 and S2 be two
SI-schedules over the same set of transactions T . S1 and S2

are SI-equivalent if for any Ti, Tj ∈ T the following holds.
(i) If WSi ∩ WSj 6= ∅ : (ci < cj) ∈ S1 ⇔ (ci < cj) ∈ S2.
(ii) If WSi ∩ RSj 6= ∅ : (ci < bj) ∈ S1 ⇔ (ci < bj) ∈ S2.

Condition (i) indicates that the order of two commit state-
ments matters if writesets overlap since this determines the
final writes. Since we also want each prefix of commit-
ted transactions to be an SI-schedule (similar to definitions
in serializability theory), all write/write-conflicting transac-
tions must be committed in the same order. Condition (ii)
leads to both schedules having the same reads-from relation.

For instance, our example SE = b1, b2, c1, b3, c3, c2, is SI-
equivalent to b2, b1, c1, b3, c2, c3. The order of two begin
statements (b1/b2) never matters. The order of c2/c3 does
not matter since WS2 and WS3 do not overlap. However,
we cannot change the order of b2/c1 since T2 reads an object
written by T1. b1, b2, b3, c1, c2, c3 seems to be SI-equivalent
to SE. Since T3 does not read anything written by T1 the
order of c1/b3 does not matter. However, it is not an SI-
schedule since b3 < c1 < c3 and WS1 and WS3 overlap.
Equivalence, however, is only defined over SI-schedules.
2Aborts would require to build committed projections.

2.2 1-copy-SI
We assume each database replica produces its own SI-

schedule over the transactions executed at this replica. Since
we follow a read-one-write-all approach, each update trans-
action has one local replica that performs all its operations.
The transaction is called local at this replica, and remote
at the other replicas. Only the write operations are applied
at these remote replicas. Hence, all replicas execute the
same set of update transactions, but an update transaction
Ti has a readset RSi only at one replica while it has the
same writeset WSi at all replicas. Read-only transactions,
in contrast, only exist at the local replica. This fact is for-
malized through a ROWA mapper function rmap that takes
a set of transactions T and a set of replicas R as input and
transforms T into set of transactions T ′. rmap transforms
each update transaction Ti ∈ T into a set of transactions
{T k

i |R
k ∈ R}. In this set there is exactly one local transac-

tion T l
i = Ti (Ti is local at Rl). The rest are remote trans-

actions T r
i , where WSr

i = WSi and RSr
i = ∅ (Ti is remote

at Rr). A read-only transaction is transformed into a single
local transaction T l

i = Ti. We call T k = {T k
i |T

k
i ∈ T ′} the

set of transactions executed at replica Rk.
In serializability theory, a replicated system is 1-copy-

serializable if the execution in the replicated system is equiv-
alent to a serial execution on a one-copy database. We follow
a similar reasoning and require the execution in the repli-
cated system to be equivalent to a global SI-schedule that
can be produced by a centralized SI-scheduler (1-copy SI).

Definition 3 (1-Copy-SI). Let R be a set of replicas
following the ROWA approach. Let T be the set of submitted
transactions for which Ti ∈ T committed at its local replica.
Let Sk be the SI-schedule over the set of committed transac-
tions T k at replica Rk ∈ R. We say that R provides 1-copy-
SI if the following properties hold. (i) There is a ROWA
mapper function, rmap, such that ∪kT

k = rmap(T ,R).
(ii) There is an SI-schedule S over T such that for each Sk

and T k
i , T k

j ∈ T k being transformations of Ti, Tj ∈ T :

(a) if WSk
i ∩ WSk

j 6= ∅ : (ck
i < ck

j ) ∈ Sk ⇔ (ci < cj) ∈ S,

(b) if WSk
i ∩ RSk

j 6= ∅ : (ck
i < bk

j ) ∈ Sk ⇔ (ci < bj) ∈ S.

Property (i) guarantees that the set of committed trans-
actions is a ROWA mapping of a subset of submitted trans-
actions. A submitted update transaction either commits at
all replicas or at none, and a submitted read-only transac-
tion commits at the local replica only. Property (ii) requires
an SI-schedule S produced by a centralized scheduler over
the set T of committed transactions. Each local schedule Sk

must be somehow equivalent to this global schedule. Since
T k and T are not exactly the same set of transactions, we
cannot take exactly the definition of SI-equivalence, how-
ever, the idea is the same. Since T k and T have exactly the
same writesets, each local schedule should have the same
order as S in regard to all conflicting writesets. Since only
the transactions local at Rk have readsets, only those local
transactions must have the same reads-from relationship as
in S. The position of the begin statements of remote trans-
actions in Sk is irrelevant (as long as Sk is an SI-schedule)
since remote transactions do not read anything. Note that
also the position of commit statements of read-only trans-
actions is irrelevant both in Sk and in S (except b < c, of
course), since no writeset is associated with them.

From now on, we write Ti instead of T k
i if it is clear from

the context that we refer to Ti’s execution at replica Rk.



3. A BASIC ALGORITHM
We develop our solution in three steps over the next three

sections respectively. We first present a Simple Replica Con-
trol Algorithm (SRCA). The basic idea is that a centralized
middleware forwards each transaction to one of the database
(DB) replicas for execution, retrieves the writeset, checks for
conflicts with concurrent transactions, and either aborts the
transaction, or commits it at the local DB replica and ap-
plies the writeset at the remote replicas. We assume each
DB replica provides an interface that allows the extraction
and application of writesets. Writesets contain the changed
objects and their identifiers. Furthermore, we assume that
each DB replica provides SI where write/write conflicts are
only detected at the end of transactions. We relax this as-
sumption in the next section. We also do not consider fail-
ures but look at them in Section 5.

Fig. 1 shows the SRCA algorithm executed by the mid-
dleware. All begin, read, write, and commit operations are
submitted to the middleware (we ignore abort requests for
simplicity). The middleware maintains a list of already val-
idated transactions (ws list). A transaction T receives an
identifier T.tid upon validation. Although all successfully
validated transactions will be committed at the different DB
replicas in validation order the replicas might run at differ-
ent speed. Hence, the middleware keeps for each replica Rk

a queue tocommit queue k which contains the writesets to
be executed and committed at Rk, and the identifier last-
committed tid k of the last committed transaction at Rk.

Upon the begin of a new transaction Ti (step I.1) one DB
replica is chosen to be the local replica. Before the start of
Ti at the DB replica, we get a mutex (I.1.b) that avoids that
the begin is concurrent with any commit operations on the
replica (II.2). With this, we can exactly determine when Ti

starts at the database (I.1.c), and hence are able to deter-
mine concurrent transactions. This is reflected by setting
Ti.cert to the transaction that was the last to commit at
the local replica before Ti started. Read and write oper-
ations are then simply forwarded to the DB replica which
reads from a snapshot and writes new object versions (I.2).
When the commit request is submitted, the middleware re-
trieves the writeset from the local replica (I.3.a). If it is
empty, Ti is simply committed locally (I.3.b). Otherwise,
the middleware starts a validation phase (I.3.c-e). Only one
transaction can be in validation phase. Ti’s writeset is com-
pared against all writesets of concurrent transactions that
validated before (maintained in ws list). If the middleware
finds a conflict, the transaction is aborted. Otherwise, the
transaction receives its tid value, and the writeset is added
to all queues (tocommit queue k). It will be applied at dif-
ferent speeds at individual replicas (II). At the local replica,
of course, the writeset does not need to be applied. Still, the
commit order in regard to other transactions must be main-
tained. Hence, the local transaction only commits when
all the writesets stored in the queue at the time of valida-
tion have been applied. In summary, validation phases start
when the writesets are retrieved, validation is an atomic
process but runs concurrently to committing and applying
the writesets. However, applying writesets by itself occurs
again in a serial fashion. Note that in order for clients to
read their own writes, a transaction should only be assigned
to a replica if all previous transactions of the same client are
already committed at this replica.

Fig. 2 shows an example that leads to an abort. The set

Initialization:
next tid := 1
ws list := {}
∀Rk : tocommit queue k := {}
∀Rk : lastcommitted tid k := 0
wsmutex, ∀Rk : dbmutex k

I. Upon operation request OP from Ti

1. if OP == bi then
a. choose Rk at which Ti will be local
b. obtain dbmutex k

c. Ti.cert := lastcommitted tid k

d. begin T k
i at Rk

e. release dbmutex k

f. return to client
2. else if OP is a read or write request

a. execute at local replica Rk and return to client
3. else (commit)

a. Ti.WS := getwriteset(T k
i ) from local Rk

b. if Ti.WS = ∅, then commit and return

c. obtain wsmutex

d. if
�
Tj ∈ ws list such that

Ti.cert < Tj .tid ∧ Ti.WS ∩ Tj .WS 6= ∅
•Ti.tid := next tid + +

•append Ti to ws list

•∀Rm: append Ti to tocommit queue m

•release wsmutex

e. else
•release wsmutex

•abort T k
i at Rk

II. Upon Ti first in tocommit queue k
1. if Ti is remote at Rk

a. begin T k
i at Rk

b. apply Ti.writeset to Rk

2. obtain dbmutex k

3. commit at Rk

4. lastcommitted tid k + +

5. release dbmutex k
6. if local, return to client.

7. remove Ti from tocommit queue k

Figure 1: SRCA: Simple Replica Control Algorithm

of transactions is again T = {T1 = (b1, r1(x), w1(x), c1),
T2 = (b2, r2(y), r2(x), w2(y), c), T3 = (b3, w3(x), c3)}. T1

is local at replica R1, and T2 and T3 are local at replica
R2. In the figure, grey boxes reflect writes, and white boxes
represent reads, begin or commit. The middleware keeps
tocommit queue k for each replica (Q1 and Q2). The figure
shows the temporal evolution of the queues and transac-
tion execution from left to right. T1 starts at R1 and reads
and updates x. At R2, T2 starts and reads y. Upon T1’s
commit request, the middleware retrieves the writeset, vali-
dation succeeds, and T1 receives T1.tid = 1. T1 is appended
to Q1 and Q2. Since T1 is the first in Q1, T1 commits at R1
and is removed from Q1 (lastcommitted tid 1 = 1 ). T3 now
starts at R2. Although T3 begins after T1 commits in R1,
it is concurrent to T1 in R2 since T1’s updates are not yet
applied in R2. Hence, T3.cert = 0. When T3 now submits
commit at timepoint A, T3’s validation at the middleware
fails since T3.cert = 0 < T1.tid = 1 and the writesets over-



Figure 2: SRCA Sample Execution

lap. Hence, T3 is aborted at R2. At the same time, R1
applies T1’s writeset and commits T1. T1 is removed from
Q2 and lastcommitted tid 2 set to 1. Although T2’s read
is after T1’s write it does not read the value written by T1

since the transactions are concurrent in R2. After T2’s ex-
ecution its validation succeeds (T2.tid = 2) since it has not
write/write conflict with T1. T2 is appended to Q1 and Q2
and later committed at both replicas.

Theorem 1. Assuming that the underlying DB replicas
provide snapshot isolation, SRCA provides 1-copy-SI.

Proof Sketch We first show that, apart of read-only trans-
actions, all replicas commit the same set of transactions. If
validation of a transaction Ti succeeds at the middleware it is
appended to tocommit queue k of each replica Rk. Transac-
tions in tocommit queue k are handled one after the other.
Let Ti be the first in the queue. If Ti is a remote transac-
tion, no other transaction commits between Ti’s start and
Ti’s commit at Rk. Hence, commit is successful. If Ti is lo-
cal at Rk, then Ti has already started at Rk. If Ti conflicted
with any transaction (local or remote) that committed at
Rk since Ti’s start, Rk would abort Ti when the commit re-
quest is submitted since Rk provides SI. But at validation,
the middleware had already checked whether there was such
transaction, and if yes, would have aborted Ti. Hence, once
a transaction is added to tocommit queue k, it will commit
at Rk. This guarantees property (i) of 1-copy-SI.

We now build an SI-schedule S fulfilling property (ii) of
1-copy-SI in the following way. Assume the system after
a set of transactions was submitted to the system and all
transactions finished execution at all replicas. Let T be the
subset that committed. Let Sk be the schedule and T k be
the set of committed transactions at replica Rk. Now we
choose any replica Rm. For any two update transactions
T m

i , T m
j ∈ T m, if (cm

i < cm
j ) ∈ Sm we set (ci < cj) in S.

Furthermore, we perform for each replica Rk the following
actions. For each local transaction T k

i ∈ T k and update
transaction T k

j ∈ T k, if (ck
j < bk

i ) ∈ Sk we set (cj < bi) in

S, and if (bk
i < ck

j ) ∈ Sk, we set (bi < cj) in S. Further-

more, if T k
i is read-only, we set ci directly after bi in S. Since

each transaction is local at exactly one replica, and update
transactions commit at all replicas, S contains exactly one
begin and one commit operation for each committed trans-
action. S fulfills (ii.a) since all replicas commit all update
transactions in exactly the same order, namely the order in
which they are appended to the queues. (ii.b) is trivially
fulfilled by construction of S. We have to show now that S

is an SI-schedule over T . Assume it is not, then there exists
a (bi < cj < ci) ∈ S and WSj ∩ WSi 6= ∅. For that to
happen, however, there must be (bk

i < ck
j < ck

i ) ∈ Sk where

Ti is local in Rk according to construction of S. This is not
possible since all local schedules are SI-schedules.

4. WORKING WITH REAL DATABASES
So far, we have assumed that the database checks write/write

conflicts at commit time. However, the commercial systems
we are aware of (Oracle and PostgreSQL) check for write
conflicts during transaction execution by the means of strict
2-phase-locking. A simplified version of the execution is as
follows. Whenever a transaction Ti wants to write a tuple x
it acquires an exclusive lock, and performs a version check. If
the last committed version of x was created by a concurrent
transaction, Ti aborts immediately. Otherwise it performs
the operation. If a transaction Tj holds a lock on x when Ti

requests its lock, Ti is blocked. When Tj commits the lock
is granted to Ti. However, Ti fails the version check and
aborts because of Tj ’s update being the last committed ver-
sion. If Tj aborts, Ti’s version check might succeed or still
fail (due to another committed but concurrent transaction
that updated x). These early conflict checks have positive
and negative aspects for the middleware. In the following,
we keep reasoning informal for space reasons.

4.1 The good thing
At the middleware, we can take advantage of the fact that

the DB replica already performs some validation during the
execution of a local transaction. When Ti finishes execution
at local replica Rk, SRCA validates Ti against all concur-
rent transactions that validated before Ti. For some of those
the DB has already performed the validation. Let Tj be a
transaction concurrent to Ti. Tj can be either local or re-
mote at Rk. If Tj is local, both the execution of Ti and
Tj finished at Rk. Hence, they do not conflict otherwise
the database would have blocked one of the two transac-
tions. Hence, the middleware does not need to validate Ti

against other transactions local at Rk. If Tj is remote and
has already committed at Rk the same holds. To show this,
assume Ti and Tj conflict on tuple x and Tj is concurrent
to Ti. Assume Tj acquired the lock on x within the DB
replica before Ti requested it, then Ti fails the database in-
ternal version check upon Tj ’s commit, and abort before the
middleware can perform validation. If Ti was the first to ac-
quire the lock, then Tj is still waiting for Ti to release the
lock at the time the middleware validates Ti. But then Tj

is not yet committed and we assumed it is. This means, if
Tj is remote and committed, it cannot conflict with Ti, and
hence, the middleware does not need to validate against Tj .
That is, the only case we have to validate is if Tj is a re-
mote transaction and has not yet committed. In this case,
however, Tj is still stored in tocommit queue k. Therefore,
the following simple adjustments can be made to SRCA.

Adjustment 1: The middleware only validates a trans-
action Ti which is local at Rk against all remote transac-
tions in tocommit queue k. Data structures ws list and
lastcommitted tid k are not needed. No dbmutex is set
since there is no need to keep track of transaction start.

4.2 The bad thing
The locking within the database can lead to blocking.

Firstly, remote transactions might be blocked by local trans-



actions. Assume a transaction Ti executing locally at Rk

and holding a lock on x. Now a remote transaction Tj is ap-
plied at Rk and also updates x. Tj will be blocked. Ideally,
Ti should be aborted since it conflicts with Tj and has not
yet been validated. The middleware will detect this conflict
once Ti finishes execution and validates. At this time, Tj is
still in tocommit queue k, and hence, Ti fails validation and
aborts. Tj receives the lock and performs the version check
within the database which succeeds since Ti aborted.

Secondly, it is possible to have deadlocks between local
transactions that have not yet finished execution, and re-
mote transactions that apply their writesets. The database
detects such deadlock and abort any of the transactions. If
the remote transaction is aborted, the middleware has to
reapply the writeset until the remote transaction succeeds.

Thirdly, and this is the most serious problem, SRCA might
have a deadlock involving a cycle across the middleware and
the database. Assume within the database replica Rk a lo-
cal transaction Ti holds a lock on x. At the same time, a
concurrent local transaction Tj holds a lock on y. A trans-
action Tr remote to Rk is successfully validated at the mid-
dleware. Assume WSr = {y}. The writeset is submitted to
Rk. Within Rk, Tr attempts to lock y but is blocked since
Tj holds this lock. Now Ti finishes execution and validation
succeeds at the middleware (it does not conflict with Tr).
However, Ti’s commit is not submitted to Rk since Tr is
still executing at Rk (Ti is not first in tocommit queue k).
Now assume transaction Tj requests a lock on x. Since Ti

holds the lock on x, Tj is blocked. Within the database there
is no deadlock (Tj waits for Ti, Tr waits for Tj). However, at
the middleware layer Ti waits for Tr, leading to a “hidden”
deadlock spanning both the middleware and the database.

4.3 Solutions to the hidden deadlock problem

4.3.1 Early writeset retrieval
If Tj , after updating tuple y, informs the middleware

about this update, then the middleware, upon validating Tr,
can detect the conflict with Tj and ask Tj to abort. How-
ever, this is unattractive for two main reasons. Firstly, it is
not that simple to abort a transaction at any time. Usually
the client can only abort between the submission of different
statements. If Tj has already submitted its operation on x
and blocks, the middleware might not be able to abort Tj

(this is actually the behavior of PostgreSQL). Furthermore,
the access of x and y might actually occur within one SQL
statement in which case Tj blocks on x before it can provide
the middleware with the information that it updated y.

4.3.2 Concurrent commit
The problem of “hidden” deadlock is due to the sequen-

tial execution of writesets and commits. The question is
whether this is really necessary. If there are two transac-
tions Ti and Tj queued in tocommit queue k and they do
not conflict there seems to be no reason to not execute them
concurrently. In particular, if a transaction Ti local to Rk is
successfully validated, we can be sure that it does not con-
flict with any transaction in tocommit queue k. Hence, we
can commit Ti immediately at Rk and still provide prop-
erty (ii.a) of 1-copy-SI. In the example above, since Tr and
Ti do not conflict, Ti can commit locally at Rk and release
the lock on x, Tj gets the lock on x, fails the version check,
and aborts. At this time, Tr gets the lock on y and can

commit. Early commit does not only seem to avoid the
deadlock problem but also decreases the response time since
a local transaction Ti at Rk can commit immediately after
validation without waiting for remote transactions queued
in tocommit queue k to finish. We can even extend this
to remote transactions. Whenever a remote transaction
Ti queued in tocommit queue k does not conflict with any
transaction queued before Ti, Ti can be applied at Rk and
it is guaranteed to commit3.

Committing non conflicting transactions as soon as val-
idation and execution have finished avoids deadlocks. A
transaction Ti only has to wait in tocommitted queue k to
start execution if Ti is remote at Rk and there is another
transaction Tj before Ti in tocommitted queue k that con-
flicts with Ti. However, Ti cannot be involved in a “hidden”
deadlock since it is remote at Rk, has not yet started at Rk

and hence, does not yet hold any locks at Rk. With this,
the following adjustment can be made to SRCA.

Adjustment 2: Step II of SRCA does not start when Ti

is the first in tocommit queue k, but when there is no con-
flicting transaction ordered before Ti in the queue.

The problem with this approach is that it does not provide
1-copy-SI. If we allow transactions to commit in different
order at different replicas, then we could have transactions
Ti, Tj and schedules Sk and Sm at replicas Rk and Rm such
that (ck

i < ck
j ) ∈ Sk and (cm

j < cm
i ) ∈ Sm if WSi ∩ WSj =

∅. Assume now, there is a transaction Ta local at Rk and
(ck

i < bk
a < ck

j ) ∈ Sk, and a transaction Tb local at Rm and
(cm

j < bm
b < cm

i ) ∈ Sm. Assume that WSi={x}, WSj={y}
and RSa=RSb={x, y} and all transactions commit. Ta and
Tb might also perform updates but this is irrelevant. A
global SI-schedule over Ti, Tj , Ta and Tb cannot fulfill (ii.b)
of 1-copy-SI since this would mean ci < ba < cj < bb < ci

which is impossible. The problem is that by starting Ta

and Tb between the commits of Ti and Tj , they induce an
indirect conflict between Ti and Tj , and the conflict order is
different at the different replicas.

4.3.3 Synchronizing start and commit order
We can solve the problem by sometimes delaying the start

of transactions. Let Ti be validated before Tj , and Ti and Tj

do not conflict. We allow Tj to commit before Ti at replica
Rk, and say that the commit order at Rk has a hole. The
hole is closed when Ti commits. We allow a local transaction
Ta at Rk to start only when there are no holes in the commit
order. Hence, if Tj commits before Ti at Rk then Ta has to
wait to start until Ti also commits at Rk. In this case,
we have the following guarantee: if (ck

i < ck
j ) ∈ Sk of any

replica Rk, then either Ti validated before Tj or
�
Ta local

at Rk and (ck
i < bk

a < ck
j ) ∈ Sk. Hence, by only allowing

transactions to start when there are no holes in the commit
order, we guarantee that indirectly induced conflicts always

3Note that although it looks like that when enqueuing a
transaction Ti into a queue, there are never conflicting trans-
actions queued before Ti, this is not true. Assume a replica
Rk executes Ti updating x, commits Ti and then starts lo-
cal transaction Tj also updating x. Tj passes validation and
is appended to all queues. Now assume a replica Rm for
which both Ti and Tj are remote. When Tj is appended to
tocommit queue m, Ti might still reside in the queue. At
Rm we may not apply Tj ’s writeset before Ti commits be-
cause otherwise both transactions might run concurrently in
the database (and then one is aborted) or Tj might execute
before Ti which results in the wrong final write.



lead to a dependency according to the validation order.
If we do this, we allow concurrent execution of writesets

and concurrent commits. However, we might delay the start
of a transaction, possibly indefinitely if there are always
holes (i.e. a livelock). A solution to this liveness problem
is to disallow new holes at certain timepoints. Eventually,
all existing holes will close, and all waiting transactions can
be started. However, we must be careful to choose time-
points at which disallowing new holes does not lead to a
hidden deadlock. These timepoints can be determined as
follows. Let A be the set of local transactions waiting to
start at Rk because of holes in Rk’s commit order. Let B be
the set of local transactions at Rk that are already running.
No new transactions can be added to B as long as there are
holes. We allow new holes to be created until B is empty.
B will eventually be empty (due to the absence of hidden
deadlocks by terminating local transactions immediately af-
ter validation even if this creates holes). Once B is empty,
we delay the commit of further transactions until all holes
have disappeared (i.e. only transactions that remove holes
or do not create new ones are allowed to commit). This
does not lead to hidden deadlocks since there are only re-
mote transactions delayed in tocommit queue k which have
not yet started and acquired locks at Rk. Once there are no
holes, we start all transactions in A moving them to B before
allowing any further commit. Then, we again allow holes in
the commit order. The following adjustemnt 3 describes the
required coordination.

• Only start a local transaction Ti at Rk if there are no
holes in the commit order of Rk.

• Commit a transaction Ti at Rk only if no local trans-
action is waiting to start at Rk or Ti is local at Rk or
no new hole is created by commit of Ti.

5. IMPLEMENTATION

5.1 Architecture
So far, we have assumed a centralized middleware (Fig.

3.a) which is attractive due to its simplicity but it is a single
point of failure. Alternatively, we could have a primary and
a backup middleware, and all clients are switched over to
the backup if the primary fails (Fig. 3.b). However, failover
might be quite complicated because in case of failures the
connections between the primary and the DB replicas are
broken. Typically, upon connection loss, database systems
abort the active transaction on the connection. At the time
the primary crashes, a given transaction Ti might be com-
mitted at some DB replicas, active at others, and not even
started at some. The backup has to make sure that such
transactions are eventually committed at all replicas.

A third solution, and this is the one implemented in SI-
Rep, is a completely decentralized middleware (Fig. 3.c).
For each DB replica Rk there is a middleware replica Mk

which is connected only to Rk and communicates with all
other middleware replicas. A client is connected to one
middleware replica and, in case of crash of this middleware
replica, is reconnected to any of the available replicas. We
discuss failures in more detail in Section 5.4. The middle-
ware provides a standard JDBC driver to the client.

5.2 Communication
Communication between the middleware replicas must be

efficient and able to handle failures. For that purpose, we use

DB DB DB

Client1 Client2

JDBC Driver JDBC Driver

DB DB DB
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Figure 3: Middleware Architectures

group communication technology in a similar way as previ-
ous data replication proposals (e.g., [25, 17, 20, 34]). Group
communication systems (GCS) provide powerful primitives
and have shown to be a useful abstraction for replicated and
fault-tolerant systems [6]. In here, we only introduce the
concepts of GCS that are needed in our context. A GCS
provides multicast primitives which multicast a message to
all members of a group. One of these primitives delivers all
messages in the same total order to all members. Using to-
tal order multicast, any two messages m1 and m2 multicast
to a group (even if from different senders) are delivered to
all members in the same order, that is, either m1 before m2
or vice versa. Usually senders are also group members and
then receive their own messages in correct order. A GCS also
provides group maintenance. For instance, it detects mem-
ber crashes and recoveries and informs the surviving mem-
bers about such membership changes. In regard to crashes,
a GCS also provides different levels of delivery guarantees.
All levels deliver all messages to all members if there are
no failures. Additionally, choosing uniform reliable deliv-
ery, even if a member receives a message and then crashes,
then all members that do not crash will not only receive the
message but receive it before they are informed about the
crash. In our implementation all middleware replicas belong
to the same group and communicate through uniform reli-
able, total order multicast. GCS also provide mechanisms
to handle network partitions and determine a single primary
view. However, we currently do not consider network par-
titions. Other replication proposals have looked into how
to use GCS to handle partitions and we believe that similar
extensions can be applied to our system [2].

GCS themselves are complex software systems, and have
their own overhead. In particular, to provide total order and
uniform reliable delivery, some form of agreement protocol
has to be run. However, in contrast to atomic commit proto-
cols for databases, no logging is involved, and these systems
are very efficient, at least for LAN environments. We are
currently using Spread [32]. In here, the delay for a uniform
reliable multicast does not exceed 3 ms in a LAN even for
message rates of several hundreds of messages per second.
Reconfiguration of the system after a crash can take up to a
couple of seconds depending on the timeout interval chosen
to detect crashes.



Initialization:
lastvalidated tid := 0
ws list := {}
tocommit queue k := {}
wsmutex

I. Upon operation request for Ti from local client
1. If select, update, insert, delete

a. If first operation of Ti wait until no holes in commit
order and then begin T k

i at Rk

b. execute operation at Rk and return to client

2. else (commit)
a. Ti.WS := getwriteset(T k

i ) from local Rk

b. obtain wsmutex

c. if Ti.WS = ∅, then commit and return

d. if ∃Tj ∈ tocommit queue k∧Ti.WS∩Tj .WS 6= ∅
•release wsmutex

•abort T k
i at Rk and return to client

e. Ti.cert := lastvalidated tid
f. release wsmutex

g. multicast Ti using total order multicast

II. Upon receiving Ti in total order
1. obtain wsmutex

2. if ∃Tj ∈ ws list such that
Ti.cert < Tj .tid ∧ Ti.WS ∩ Tj .WS 6= ∅
•release wsmutex

•if T k
i local then abort T k

i at Rk else discard

3. else
•Ti.tid := + + lastvalidated tid

•append Ti to ws list and tocommit queue k

•release wsmutex

III. Upon ∀Tj , Tj before Ti in tocommit queue k :
Ti.WS ∩ Tj .WS = ∅, and either

�
Ta waiting to start

at Rk or Ti is local or Ti does not create a new hole.
1. if Ti is remote at Rk

a. begin T k
i at Rk

b. apply Ti.writeset to Rk

2. commit at Rk

3. if local, return to client.

4. remove Ti from tocommit queue k

Figure 4: SI-Rep: SRCA-Rep at Mk

5.3 Replica Control
We have implemented a decentralized version of SRCA,

called SRCA-Rep (including the adjustments 1-3 of Section
4). When a transaction is submitted to a middleware replica
Mk it is first executed at the local DB replica Rk. At the
end of execution Mk retrieves the writeset and multicasts
it to the other middleware replicas. All middleware replicas
now perform validation and must take the same decision. In
order to do so, we send writesets using total order multicast.
That is, if two middleware replicas concurrently multicast
two writesets WSi and WSj , then either all middleware
replicas (including the senders) receive WSi before WSj or
vice versa. We require all middleware replicas to validate
transactions in writeset delivery order.

Fig. 4 describes SRCA-Rep running on middleware replica
Mk. A client of Mk submits the operations of its transac-
tions only to Mk which executes them locally. JDBC does

not have a begin statement. Instead, the first operation af-
ter a commit/abort automatically starts a new transaction4.
In SRCA-Rep, we need an explicit start in order to synchro-
nize with commits (step I.1.a). Upon the commit request,
Mk retrieves the writeset from the DB replica and multi-
casts it to all other middleware replicas in total order (steps
I.2.a and I.2.g). Each middleware replica Mk has to perform
validation for all writesets in delivery order, and then apply
remote writesets and commit transactions (steps II and III).
It only maintains a single tocommit queue k for its local Rk.

In order to reduce the validation overhead, SRCA-Rep val-
idates in two steps, first a local validation at Mk at which
Ti is local, and later a global validation at all replicas. Lo-
cal validation occurs at the same timepoint as validation
occurs in the centralized solution, namely directly after the
writeset is retrieved (I.2.d). In only validates against trans-
actions in the local tocommit queue k as discussed in ad-
justment 1. Only if this local validation succeeds, Mk mul-
ticasts Ti’s writeset (I.2.g). Since middleware replicas can
send writesets concurrently, several writesets of other trans-
actions might be delivered between sending and receiving
Ti’s writeset. When validating locally, Mk had not con-
sidered these writesets. Instead this is the task of global
validation (II.2). By setting Ti.cert accordingly just before
the multicast, at the time Ti’s message is received, Ti is re-
ally only validated against transactions who were multicast
concurrently but received before Ti. Once Ti is successfully
validated it can be (applied if remote) and committed once
there is no transaction with overlapping writeset before it in
tocommit queue k. The synchronization between start and
commit as described in adjustment 3 must be performed.

5.4 Client Interaction and Failures
A client is connected to one middleware replica via a stan-

dard JDBC interface. The SI-Rep JDBC driver is designed
for LANs where we assume no network partitions but we pro-
vide automatic failover in case of site or process crashes. We
are not aware of any other other replication solution based
on GCS that performs such transparent failover. The mid-
dleware as a whole has a fixed IP multicast address where
the middleware replicas are the final recipients. With this,
IP addresses of individual replicas do not need to be known
in advance. Upon a connection request, the SI-Rep JDBC
driver multicasts a discovery message to the multicast ad-
dress. Replicas that are able to handle additional workload
respond with their IP address/port. The driver connects to
one of them, keeping the others for failure cases.

We can consider different types of crashes. The machine
on which a middleware/DB replica pair resides crashes, only
the middleware process crashes or only the DB crashes. In
all three cases, we consider the entire pair unavailable. If
the middleware replica crashes all its client connections are
lost. The drivers on the clients will detect this and automat-
ically connect to another replica. At the time of crash the
connection might have been in one of the following states.

1. There was currently no transaction active on the con-
nection. In this case, failover is completely transparent.

2. A transaction T was active and the client has not yet
submitted the commit request. In this case, T was still
local on the middleware/DB replica that crashed, and

4This is the behavior if autocommit=off. Otherwise each
statement should be executed in its own transaction. For
simplicity, we only show the case for autocommit=off.



the other replicas do not know about the existence of T .
Hence, it is lost. The JDBC driver returns an appropri-
ate exception to the client program. But the connection
is not declared lost, and the client can restart T .

3. A transaction T was active and the client has already
submitted the commit request which was forwarded to
the middleware replica. In this case, the state at the
remaining available replicas might be as follows:
a.) They have not received T ’s writeset, and hence, do

not know about the existence of T , and T must be
considered aborted.

b.) They have received T ’s writeset. If validation suc-
ceeds, they commit T .

Note that uniform reliable delivery guarantees that if
the local replica received the writeset and committed
T before the crash, then all (available) remote replicas
receive the writeset and hence, also commit T .

Let’s have a closer look at case 3. If clients are directly con-
nected to the database and the database crashes after a com-
mit request but before returning the confirmation, clients do
not know whether the transaction aborted or committed.
In our case, however, we are able to provide such feature.
When a new transaction starts at a middleware replica, the
replica assigns a unique transaction identifier and returns
it to the driver. Furthermore, the identifier is forwarded to
the remote middleware replicas together with the writeset.
Each replica keeps these identifiers together with the out-
come of the transaction (commit/abort determined at vali-
dation). If now a crash occurs during a commit request, the
JDBC driver connects to a new replica and inquires about
the in-doubt transaction by sending the transaction identi-
fier. If the new replica had not received the writeset, it does
not know about the identifier, and hence, informs the driver
that the transaction did not commit. The driver returns the
same exception to the client as if the commit was not yet
submitted at the time of crash. If the new replica has the
identifier, it checks for the outcome and returns the outcome
to the driver which forwards it to the client program. In this
case, failover was completely transparent.

Note that due to the asynchrony of message exchange it
might be possible that the middleware receives the inquiry
about a transaction from a driver and only after that it
receives the writeset for the transaction. In order to handle
this correctly, the replica does not immediately return to the
JDBC driver if it does not find the transaction identifier.
Instead, it waits until the GCS informs it about the crash of
the old replica. According to the properties of the GCS, the
new replica can be sure that it either receives the writeset
before being informed about the crash or not at all. Hence,
it can inform the driver accordingly.

So far, recovery and the joining of new nodes is offline.
Transaction processing has to come to a halt, and then a
complete database copy is transferred from one of the DB
replicas to the new or recovering replica. Only then, trans-
action processing can proceed. In order to perform online
recovery, the middleware probably has to log writesets. This
would allow it to send the writesets a crashed replica has
missed upon recovery. It would also allow for recovery from
total failure where the different replicas might have commit-
ted different subsets of transactions just before the crash.

5.5 Database Interaction
We are currently using PostgreSQL as our underlying

database system providing SI. We have extended PostgreSQL
for writeset management [20]. Our implementation inter-
cepts the query execution after an update happens on a
tuple and forwards the modified tuple to a writeset man-
agement module for marshalling. This module exports two
methods that can be called by users, one to retrieve the
writeset and one to apply a writeset. [27, 33] are other
PostgreSQL based replication tools using triggers for write-
set retrieval. Currently, some developers associated with
the PostgreSQL development team have started implement-
ing a writeset feature with which users can retrieve writesets
in readable format before or after commit. They will not use
triggers but will set hooks in the code that allow access to
modified tuples [19]. We will use this feature once available.

The JDBC driver provided by SI-Rep forwards requests
to the middleware. The middleware then uses PostgreSQL’s
original JDBC driver to submit requests to the database.

One problem of using JDBC to connect to the database
is that it does not provide any explicit begin statement but
assumes a transaction starts at the first operation after a
commit/abort. SRCA-Rep has to synchronize the start of a
transaction with the commit of other transactions to guaran-
tee no holes. However, starting the transaction with the first
operation might already lead to a hidden deadlock. There-
fore, we currently submit a dummy query statement on an
empty table as a fast and non-blocking start.

6. PERFORMANCE EVALUATION
We tested SI-Rep on three different workloads in order

to understand its performance behavior. We first provide
results using the TPC-W benchmark to see how SI-Rep be-
haves under a real application. In order to better under-
stand the behavior of the system in certain circumstances
we used our own, simplified benchmarks. All results were
run on a cluster of standard PCs (Pentium 4, 2.66 GHz with
0.5 GByte RAM) running Linux. In each test run a certain
number of clients are connected to one middleware replica.
Within a transaction, a client submits the next SQL state-
ment immediately after receiving the previous one, but it
sleeps between submitting two different transactions in or-
der to achieve the desired system wide load. All tests were
run until a 95/5 confidence interval was achieved.

6.1 TPC-W
TPC-W [11] simulates a bookstore with three different

kinds of workloads that vary in the ratio of update vs. read-
only transactions. We have chosen the ordering workload
that consists to 50% of update transactions and 50% of read-
only transactions. The database has eight tables, and the
size of each table is determined by the items and emulated
browsers in the system. Our configuration has 1000 items
and 40 emulated browsers. This results in a relatively small
database of around 200 MBytes.

Figure 5 shows the average response times for update
and read-only transactions with increasing system load and
five replicas. Additionally, the response times for a central-
ized system are also presented (it still uses our middleware
but the middleware simply forwards requests to the single
database and does not perform any concurrency control,
writeset retrieval, etc.). The benchmark has many short
queries, which gives queries on average a smaller response
time. As expected, the response time increases with the load
in the system until the system is saturated. At 25 trans-
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Figure 5: Response Times for TPC-W

0

50


100

150

200

250

300

350

400


450


5
 10
 15
 20
 25
 30
 35
 40
 45

Load (txn/sec)


R
es

po
ns

e 
tim

e 
(m

s)

 5 replicas


10 replicas


Figure 6: Large Database

action per second (tps), the centralized and the replicated
system have more or less the same response times since the
system is only lightly loaded. At this load, the overhead of
the middleware (communiation/validation) is compensated
by the fact that queries are distributed over 5 replicas com-
pared to the centralized system. At 50 tps, however, the
centralized system is already saturated while the replicated
system can handle loads up to 100 tps with acceptable per-
formance. Although the database is relatively small, con-
flict rates were small, and very few aborts took place (far
below 1%). This shows that the approach has potential to
provide scalability and increased performance over a cen-
tralized system while providing fault-tolerance and full data
consistency.

6.2 Large Databases
In this section, we look at a scenario with a large database

of 1.1 GBytes. Each database has 10 tables. There are two
transaction types. One is an update transaction with 10 up-
date operations, the other is a query with medium execution
requirements, and the update/query ratio is 20/80. The ap-
plication is read intensive and highly I/O bound. Hence, we
can expect that by adding more replicas we can either in-
crease the maximum achievable throughput or decrease the
response time of individual transactions since the read load
can be distributed over all replicas.

Fig. 6 shows the response time of update transactions with
increasing load for 5 and 10 replicas. Results are similar
for read-only transactions but response times were generally

longer due to the choice of query. The results for a central-
ized system are not shown since the maximum achievable
throughput is around 4 tps with a response time of over 300
ms for update transactions. We did not use any indexes
or performed other tuning, hence the performance of Post-
greSQL on this configuration is rather limited. In contrast
to a single server configuration, a 5-replica system can han-
dle a load up to 20 tps without exceeding a response time of
200 ms. A 10-replica system can achieve such response times
up to 35 tps. Hence, we can in fact achieve the scalability
that is required for read-intensive applications.

6.3 Analyzing the Overhead of Replication
In this experiment, we want to analyze the overhead of

replica control. For that purpose we set up a configuration
that stress-tests the system. The database is very small with
only 14 MBytes, again having 10 tables. This time, we only
run update transactions performing 10 simple updates.

For this experiment, we run two versions of SRCA-Rep.
The original one, and one that we call SRCA-Opt. SRCA-
Opt does not perform the synchronization between starting
transactions and committing transactions but allows trans-
actions to start even if there are holes in the commit order.
That is, it only implements adjustments 1 and 2. While each
transaction runs under SI within its local database, 1-copy-
SI might be lost. By comparing SRCA-Opt and SRCA-Rep
we want to get an idea of how costly the synchronization
overhead is. We also compare the result with an existing
middleware based replica control algorithm based on GCS
[20] which we have reimplemented into our system. It re-
quires a transaction to run in the same context as the mid-
dleware, and all tables a transaction accesses must be known
in advance to the replica control system. Clients submit
parametrized requests to execute a transaction. Upon re-
ceiving a client request for an update transaction, the mid-
dleware multicasts it to all middleware replicas with total or-
der. All replicas acquire all necessary table level locks for the
transaction in delivery order. Only one replica (determined
by some policy) executes the transaction, retrieves the write-
set and multicasts it to the remote replicas (in FIFO order)
where the writeset is applied once the locks are granted at
these replicas. The local middleware returns to the client
once the transaction has executed and committed locally.
This algorithm requires two messages per transaction. We
have evaluated a configuration where a transaction accesses
three different tables (which is a bit less than the number of
tables accessed by a typical transaction in TPC-W).

Fig. 7 shows the response times for update transactions
with increasing loads for 5 replicas and a centralized system.
In this setting, SRCA-Rep and SRCA-Opt have similar re-
sponse times at small loads but SRCA-Rep is worse than
SRCA-Opt at higher loads. SRCA-Rep spends time in the
synchronization of begin and commit statements. This syn-
chronization overhead is high when there are many trans-
actions. On average, there are holes at around 4-8% of
the times a transaction wants to start. These holes are
mainly generated by local transactions that immediately
commit after validation, overtaking remote transactions in
the tocommit queue k. Whenever there are holes, start-
ing transactions have to wait. Whenever transactions start,
commit operations have to wait. SRCA-Opt does not have
this synchronization problem. However, we do not expect
that there are many applications running on such a small
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Figure 7: Update intensive workload

database with such a high load of short update transac-
tions (13 Mio transactions per day). In fact, we also tested
SRCA-Opt on the large database of the previous section,
and the performance differences between SRCA-Rep and
SRCA-Opt were very small. However, in update intensive
workloads, SRCA-Opt might be a better alternative even
it does not provide full 1-copy-SI. This might be compara-
ble with approaches in centralized systems where at high
workloads lower levels of isolation are chosen (e.g., READ
COMMITTED) to speed up performance.

Compared to the centralized system, SRCA performs worse
at low throughput since SRCA requires communication and
additional validation. But it can achieve a higher maximum
throughput, what is surprising with 100% updates. This is
due to the fact that remote replicas only apply writesets in
comparison to executing the complete SQL update state-
ments. Applying writesets takes only around 20% of the
time it takes to execute the entire transaction. Hence, hav-
ing more than one replica is still able to alleviate the load
on each replica.

SRCA (-Rep and -Opt) has similar response time com-
pared to the replication approach of [20] but achieves higher
maximum throughput. There are several differences in the
approaches. The protocol of [20] acquires table level locks
and the resulting lock contention is the reason why it satu-
rates earlier. At the saturation point too many requests are
queued and the system deteriorates. At low loads and con-
flict rates, however, response times are similar. Although it
needs more messages than SRCA, this overhead is compen-
sated by having less client/middleware interaction (SRCA
has communication for each statement of a transaction while
in the protocol of [20] a client only sends one request per
transaction). [20] does not provide transparent replication
and a standard JDBC interface. Instead, application pro-
grams must be embedded within the middleware system and
analyzed to determine the tables to be accessed. These re-
sults show that the transparency provided by SRCA does
not come at a price of less performance.

We did not compare against any of the open-source repli-
cation solutions for PostgreSQL because they are all lazy
where updates are only propagated after a considerable de-
lay. Hence, the semantics of these solutions is very differ-
ent to ours. We tested the system against Postgres-R [34]
which provides kernel-based eager replication. The results
were very similar to SRCA-Rep since their main difference
lies in the validation process while the principal transaction

execution is similar (see Section 7). In fact, SRCA-Rep was
slightly faster than Postgres-R but we believe the main rea-
son are some inefficiencies in the prototype of Postgres-R
which would not occur in a more professional implementa-
tion.

7. RELATED WORK
Basically all commercial systems provide one or more repli-

cation solutions. Eager solutions are typically for fault-
tolerance and often provide only a primary/backup system
where backups only have limited reading capabilities (e.g.,
DB2 HADR and Oracle Data Guard). There exist a wide
range of lazy solutions for various kinds of applications.
They are often primary copy and it is the responsibility of
the client to connect to the primary if it wants to update
data (secondary copies simply reject updates). For lazy, up-
date everywhere approaches many different conflict resolu-
tion strategies are provided but the users are recommended
to only use such approaches if conflict rates are very low
or conflict resolution is relatively easy for the application
in question. Our approach, in contrast, is aimed at ap-
plications where replication should be used for both fault-
tolerance and scalability, and conflict rates are high enough
to require to be addressed before transaction commit.

In regard to research, there exists a huge body of replica-
tion literature and we are able to cover only some of the most
recent work. In regard to lazy, update everywhere replica-
tion, a main issue is efficient update propagation guaran-
teeing eventually consistent data [28, 26]. Using a hybrid
approach, SI-Rep has always consistent data.

In regard to lazy, primary copy replication, much research
has focused on data placement strategies for systems with
multiple primaries guaranteeing serializability [16, 10, 4, 8,
23]. Since we use an update everywhere scheme, we do not
have these concerns. [12, 27] analyze how to guarantee ses-
sion consistency where clients see their own changes when
reading from secondary copies. [24] studies the effects of
different update propagation techniques on the freshness of
data. The focus of [29] is to provide efficient query execu-
tion and freshness properties for queries. SI-Rep provides
data freshness by its hybrid update propagation. All pri-
mary copy approaches can only accept updates at the pri-
mary. This restriction does not exist in our system. Fur-
thermore, many of the approaches do not consider fault-
tolerance which is provided by our system in a transparent
manner.

In regard to eager and hybrid approaches, [4] uses a global
serialization graph for conflict detection. However, they do
not indicate how to integrate their approach with existing
database technology. [3, 9, 20] provide replication at the
middleware layer and perform pessimistic concurrency con-
trol at a coarse level. Additionally, some of them require
transactions to pre-declare some properties. These limita-
tions are exactly what we try to eliminate in our system.
Our performance measurements show that we can achieve
this without performance penalty. [34] provides SI based
replication integrated into the kernel of PostgreSQL. Al-
though the general execution is similar using total order
multicast to support conflict detection, the validation itself
is very different since [34] is kernel based, and our solution is
middleware based. Also, [34] does not provide transparent
failover. [21, 13] provide replication based on SI. However,
their algorithms are on a very abstract level and ignore the



challenges one has to face when working with a real system.
[13] also provides a correctness criteria with similar prop-

erties to 1-copy-SI. However, their definitions and reason-
ing are quite different to ours. [27] extends the notion of
SI for primary copy replication to allow read-only transac-
tions to access older snapshots at secondary copies. [31,
30] discuss how to provide global SI and serializability in a
federated database if the individual database systems pro-
vide SI. However, the solution in [31] is quite conservative
and might potentially disallow many schedules that provide
SI. The solution in [30] requires to understand reads-from
relationships by analyzing SQL statements.

8. CONCLUSION
In this paper, we present a middleware-based replica con-

trol mechanism that provides snapshot isolation for the en-
tire replicated system. The middleware has its own concur-
rency control system complementing the one of the under-
lying systems, and detecting conflicts on a tuple level. The
system is compatible with existing database systems that
provide snapshot isolation through a lock-based conflict de-
tection mechanism. Our prototype SI-Rep is implemented
on top of PostgreSQL providing a standard JDBC driver
interface to the clients. The system is fault-tolerant, pro-
vides full data consistency, and has very good performance
outperforming a centralized system for all tested workloads.
We are currently extending our system to provide recovery
without interrupting transaction processing. We are also
examining load-balancing issues.
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