

ADAPT
IST-2001-37126

Middleware Technologies for Adaptive and

Composable Distributed Components

Project funded by the
European Commission under the
Information Society Technologies
Programme of the 5th Framework

(1998-2002)

Evaluation

Deliverable Identifier: D19
Delivery Date: 1st October 2005
Classification: Public Circulation
Authors: All partner members
Document version: 1.0 23rd September 2005

Contract Start Date: 1st September 2002
Duration: 36 months
Project coordinator: Universidad Politécnica de Madrid (Spain)
Partners: Universitá di Bologna (Italy), ETH Zürich (Switzerland), McGill

University (Canada), Universitá degli Studi di Trieste (Italy),
University of Newcastle (UK), Arjuna Technologies Ltd (UK)

 2

Contents

1 ADAPT Evaluation... 3

1.1 Evaluation of Non-Functional Capabilities and Attributes 3
1.1.1 Basic Service Support Experiments ... 3

1.1.1.1 Via the Front Tiers.. 3
1.1.1.2 Via the Middle Tier .. 9
1.1.1.3 Via the Back Tier.. 16
1.1.1.4 Highly available advanced transaction support 17

1.1.2 Composite Service Support Experiments ... 19
1.2 Strategy for Evaluating Functional Capabilities and Attributes..................... 20

1.2.1 Proof-of-concept implementation... 21
1.2.2 Service description goal.. 22
1.2.3 Composability goal... 23
1.2.4 Configuration goal.. 23
1.2.5 Adaptation goal... 23
1.2.6 Process definition goal.. 24
1.2.7 Replication goal.. 24
1.2.8 Security goal ... 24
1.2.9 Transaction models goal... 25

2 References .. 26
Appendixes ... 27

 3

1 ADAPT Evaluation
The purpose of this document is to provide an evaluation of the results of the ADAPT
project, both in the area of basic services and composite services. This evaluation has
been completed by following the Revised Evaluation Plan (D16), which was a month 24
deliverable of the project. The structure of this evaluation follows very closely the
structure of the evaluation plan; the first section will examine the non-functional
capabilities and attributes of the ADAPT system. The second section then examines the
functional capabilities and attributes of the ADAPT system.

1.1 Evaluation of Non-Functional Capabilities and Attributes
The main non-function goals of the ADAPT project are in the areas of Availability,
Adaptability, Scalability and Performance. This section is divided into two parts, an
examination of the basic services support and an examination of composite service
support.

1.1.1 Basic Service Support Experiments
The evaluation of the Availability, Adaptability, Scalability and Performance of the
ADAPT Basic Service support involved analysis at each tier of its Basic Service
platform. The front tier being the support for web services, the middle tier being the
support for EJBs and the back tier being the support for the databases.

1.1.1.1 Via the Front Tiers
The evaluation of the front tier of the ADAPT Basic Service platform involved
analyzing the performance of the JMiramare system. This was done on a cluster of four
Athlon XP 2600+ boxes with 512 MB RAM each. The software present on the
machines were:

• S.u.S.E. Linux 9.0;
• Java SDK 1.4.2;
• JBoss 3.2.3;
• Adapt-replication-framework (with a minor modification needed for one thread

– one client behaviour that has just been included in the “final” release of the
framework);

• JMiramare replication algorithm (with the server-side load balancing disabled).

The test application which was constructed to allow this evaluation was a simple Axis
web-service, those state is an array of Integer values.

The size of the array was set with a call to the init() method of the service. The test
methods exposed by the service were:

• increment() – increments each array member by one, returns no value;
• read() – returns mean value of the array rounded to an integer;
• incrementAndRead() – combination of the above two methods;
• readAll() – returns the entire array.

The client application part of the evaluation was run on a multi-node system. The
“master” node distributed the load (number of threads that each node should run) and
values of configurable parameters to the other nodes and coordinated the whole system
via TCP. At the end of the test, the “master” collected and sumed the data from all the

 4

nodes and stored it to a file. Up to five client nodes were used to inject the load into the
system.

Each node started the assigned number of threads that acted as actual “clients” for the
web service. The threads were started one at a time at one second intervals. Once all the
threads had started, the warm-up period began, when threads (clients) make calls to the
cluster, but the data was not collected. The actual test was run at the end of the warm-up
period. During “runtime” both successful and failed calls were counted and the latency
of successful calls was measured. Each client slept for a short period between calls.

The following parameters were used for the test:

• Tests were performed with three different array sizes (1, 100 and 1000.)
• For each object size, tests were run separately for each of the four methods.

(Except for readAll method, tested for array size 100 only.)
• Both “warm-up” and “runtime” intervals were 10 minutes long.
• Clients slept for 600 ms between calls.
• From the collected data we calculated throughput (operations/second) and mean-

latency (milliseconds) as observed by the clients.
• For comparison, we tested JBoss with the Adapt-framework configuration

(Array size 1, 100, 1000) and JBoss-only configuration (Array size 100) as well.

The test results that were obtained will now be described - only the clients/throughput
graphs are shown.

Object (Array of int) size 1

0,00

50,00

100,00

150,00

200,00

250,00

300,00

0 50 100 150 200 250 300 350 400

Clients

Th
ro

ug
hp

ut
 (o

p/
s)

iar
i
r

Figure 1, Adapt-framework with JMiramare.

 5

Object (Array of int) size 100

0,00

50,00

100,00

150,00

200,00

250,00

300,00

0 50 100 150 200 250 300 350 400

Clients

Th
ro

ug
hp

ut
 (o

p/
s)

iar
i
r
ra

Figure 2, Adapt-framework with JMiramare.

Object (Array of int) size 1000

0,00

50,00

100,00

150,00

200,00

250,00

300,00

0 50 100 150 200 250 300 350 400

Clients

Th
ro

ug
hp

ut
 (o

p/
s)

iar
i
r

Figure 3, Adapt-framework with JMiramare.

 6

Framework Only

0,00

50,00

100,00

150,00

200,00

250,00

300,00

350,00

0 100 200 300 400 500

Clients

Th
ro

ug
hp

ut
 (o

p/
s) 1-i

1-r
100-i
100-r
1000-i
1000-r

Figure 4, Adapt-framework only.

JBoss Only

0,00

20,00

40,00

60,00

80,00

100,00

120,00

140,00

160,00

180,00

200,00

0 50 100 150 200 250 300 350 400

Clients

Th
ro

ug
hp

ut
 (o

p/
s)

i
r

Figure 5, JBoss only.

The service latency was measured on the client side, for a single client. For the
replicated case, the cluster was set up like in the above tests, while for the non-
replicated (JBoss-only) case, a single server machine was used.

 7

Array Size Method Mean Latency
Jmiramare

Mean Latency
Framework

Mean Latency
JBoss-only

iar 76,20 22.92 21,10
i 75,68 20.51 20,11
r 29,33 20.96 18,90 1

ra 29,60 20.92 21,55
iar 73,43 23.23 18,29
i 82,43 21.38 19,75
r 28,62 22.59 20,12 100

ra 36,32 25.51 34,38
iar 90,83 23.95 19,44
i 79,15 23.85 17,53
r 27,99 25.03 19,62 1000

ra 107,74 83.41 228,97

The evaluation of JMiramare led to the following conclusions and observations:

• Since we were unable to come up with a satisfactory server-side load balancing
mechanism, one that would converge in all test cases, we distributed the load
evenly among the cluster members from the client side. (The primary goal of
these tests was to measure JMiramare and the replication-framework
performance, not the efficiency of a load balancing algorithm.)

• The SOAP parsing of the replies on the client side consumed a considerable
amount of the CPU time which made the introduction of a pause between the
calls absolutely necessary. Still, the results of the readAll() method were
compromised because the clients’ CPUs saturated long before the servers’ did.

• In the JMiramare replication algorithm, the read-only operations did not require
multicasts because the state of the service object remained unchanged, so the
higher throughput was expected.

• The size of a JMiramare multicast message varied with object (array) size:

Array size Object state (bytes) Multicast msg (bytes)
1 296 1307

100 692 1703
1000 4292 5304

• The Adapt-framework’s throughput (with no replication algorithm plugged in)
in the above tests was limited by the clients’ CPU usage. Even with 500 clients,
the server CPU usage was still at around 70% on each cluster member. The
results were significantly better than in the JMiramare case for the update
operations. As expected, for the read-only operation that did not require a

 8

multicast in the JMiramare, the results were quite similar for the two
configurations.

Array size 100

0,0

50,0

100,0

150,0

200,0

250,0

300,0

350,0

0 100 200 300 400 500

Clients

Th
ro

ug
hp

ut
 (o

p/
s) rep-i

fw-i
rep-r
fw-r

Figure 6, Adapt-framework with JMiramare vs. Framework-only.

• The JBoss-only test results remain hard to explain. That is, the configuration
from which we expected the best results (highest throughput) actually produced
quite the opposite. The cause is most likely to have been a configuration error
although we did not manage to discover it. The only other explanation that
would explain this behavior was that the Adapt-framework possessed a custom
session handling implemented.

 9

Array size 100

0,0

50,0

100,0

150,0

200,0

250,0

300,0

0 50 100 150 200 250 300 350 400

Clients

Th
ro

ug
hp

ut
 (o

p/
s)

rep-i
non-i
rep-r
non-r

Figure 7, Adapt-framework with JMiramare vs. JBoss-only.

Array size 100

0,0

50,0

100,0

150,0

200,0

250,0

300,0

350,0

0 100 200 300 400 500

Clients

Th
ro

ug
hp

ut
 (o

p/
s)

fw-i
jb-i
fw-r
jb-r

Figure 8, Adapt-framework vs. JBoss-only

1.1.1.2 Via the Middle Tier

The evolution of the Middle Tier of the Basic Service support has been divided into two
part, the evaluation of the framework and replication algorithm.

Framework evaluation

To evaluate the performance of the framework, we used the ECperf benchmark
provided by Sun. The benchmark uses a standard manufacturing / supply chain /

 10

inventory problem as an example to exercise the numerous features defined in the J2EE
specification. The benchmark consists, for one part, of several bean archives to be
deployed on the application server and a database schema to be instantiated and
populated, and, for the other part, of a configurable client application that uses those
previously deployed beans to stress the server. The main configuration variable is the
target transaction rate at which the client will try to make the server operate by creating
an appropriate number of independent client threads. Once the test is completed, the
client software collects statistics from the different threads and extracts an average
“business operations per minute” computed over the steady state phase of the run (the
ramp-up and ramp-down phases are ignored).

In our experimental setup, the JBoss application server and the PostgreSQL database
management system ran on a single 2.4~GHz Pentium~IV Linux machine with 1~GB of
RAM (which was otherwise idle). Clients were executed on a different machine, located
on the same local area network.

In this environment, we measured the performance of two configurations. The first was
JBoss, without the ADAPT framework (and without the JBoss replication mechanism).
The second was the ADAPT modified configuration, with a “dummy” replication
algorithm that caused it to behave as a normal non-replicated server. The results of this
experiment are shown in Figure 9.

Figure 9 Experimental results of the ECperf benchmark run against an unmodified

version of JBoss and against the ADAPT framework. The target line shows expected
throughput according to the chosen transaction rate.

The general shape of both curves was the same: the number of operations increased
linearly with the target transaction rate until the server became overloaded. After this

 11

point, some transactions began being aborted, due to timeout or contention on the
database management system. This overload landmark was reached at 21 transactions
per second for unmodified JBoss, and at 18 transactions per second for the ADAPT
configuration. The throughput maxima were 2105 and 1800 business operations per
minute respectively. In other words, the penalty for adding the framework was a 22%
drop in throughput. One should also note that beyond the overload landmark,
performance degraded more steeply in the ADAPT configuration.

Clearly, adding the framework had a real impact on the server. However, at 1800
ECperf business operations per minute, the performance was still quite practical,
enabling developers to run realistic benchmarks against their prototype replication
algorithms.

Replication algorithm evaluation

The evaluation of the middle tier of the ADAPT Basic Service platform also involved
analyzing the performance of the SIB system which is the replication algorithm for the
application server based on the framework. We used three suites of experiments to
evaluate SIB system. First, we used the ECperf benchmark to evaluate the performance
on a “real” application and compare it with JBoss's existing replication technique. A
second test suite was used to present a series of micro benchmarks that show the
performance for different components and database access patterns. The third
experiment evaluated failover. All tests were run on a cluster of PCs (3.0 GHz Pentium
4 with 1 GB of RAM) running RedHat Linux. The configuration consisted of one
machine emulating clients, one machine running the web server (if needed), two
machines running JBoss application server 3.2.3 instance, and one machine running
DB2 as our database system.

ECperf emulates businesses involved in manufacturing, supply chain and
order/inventory management. The application is split into four domains: customer,
manufacturing, supplier domain, and corporate. The main configuration variable is the
transaction injection rate (IR) which refers to the rate at which a specified subset of
business transaction requests is injected into the system.

In this experiment, we evaluate the following architectures. (1) A regular, non-
replicated JBoss server as baseline for comparison. (2) The JBoss server including the
framework without the replication algorithm to evaluate the overhead of an abstraction
layer useful for reusability and platform independence. (3) Two application server
replicas using our eager replication algorithm. (4) Two application server replicas using
JBoss's own replication solution, which we refer to as JBoss clustering. For both (3) and
(4) we did not take advantage of load balancing, and submitted all requests to one
server. JBoss clustering uses passive, warm, and eager replication. If a client request
triggers execution on several stateful components, state transfer takes place individually
once execution on the component has terminated. Although eager, problems occur if
state propagation for some of the components was successful but the primary fails
before committing the transaction at the database. In this case the backups have a
partially replicated state while the database transaction aborted. Hence, JBoss clustering
does not provide state consistency or exactly-once execution.

 12

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 2 4 6 8 10 12 14 16 18 20

Injection Rate

Bu
sin

es
s

O
pe

ra
tio

ns
 (

pe
r m

in
ut

e)

Replicated Jboss
Clustered Jboss
Jboss+Framework
Non-Replicated Jboss

0

50

100

150

200

250

300

350

400

450

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Injection Rate

R
es

po
ns

e
Ti

m
e

 (m
s)

Replicated Jboss
Clustered Jboss
Jboss+Fram ework
Non-Replicated Jboss

(a) Response Time

(b) Throughput

Figure 10, ECPerf Comparison

Figure 10 shows the results of the experiment measured over the steady state phase of
the run (the ramp-up and ramp-down phases are ignored). The figure (a) shows the
average response time for order entry transactions of the customer domain. At low
throughput, the framework adds around 10 ms to the non-replicated JBoss, our

 13

algorithm (indicated as Replicated JBoss) adds 25 ms while JBoss clustering adds
around 100 ms. This gives an overhead of around 25% for our algorithm plus the
framework, and 70% for JBoss clustering. The latter performs so badly because it sends
state after each method invocation while our solution only communicates at the end of
the transaction. As a comparison, Moser et. al. in [A fault tolerance framework for
CORBA. In Proc. of the Int. Symp. on Fault-Tolerant Computing, Washington, DC,
USA, 1999.] indicate around 15% overhead for FT-CORBA (primary-backup)
compared to non-replicated CORBA. With increasing IR, the response time in all
systems increases steadily until saturation point. The gap between non-replicated JBoss
and the eager algorithm increases slightly but steadily, while it remains nearly the same
for JBoss clustering until around 11 IR beyond which it becomes significantly worse.
More information about the saturation point can be found in figure (b). This figure uses
the average business operations per minute to represent the maximum achievable
throughput when the IR increases. The maximum in each curve shows the system
shortly before saturation. Our algorithm leads to saturation at an IR of 15 due to CPU
overhead. JBoss clustering saturates at 17 IR (also due to CPU) while the non-replicated
JBoss saturates at 19 IR. In this case, our DB2 server is the bottleneck although the CPU
was also already quite heavily loaded. By optimizing the DB2 configuration (we used
the default configuration of DB2 with only small adjustments), the CPU might become
the limiting resource also in this case. The reason for earlier saturation of our approach
compared to JBoss clustering is higher CPU overhead (keeping old responses to
guarantee exactly-once, keeping information during transaction execution to send all
state in a single message).

In summary, we believe that our approach provides acceptable performance considering
the strong consistency guarantees that it provides. It compares favorable with JBoss's
clustering mechanism. Nevertheless, the overhead is not negligible. We believe,
however, that more “engineering” work in optimizing our in-memory data structures
could lead to further improvement. In order to better understand where to start such
optimizations, the next section presents results on simpler applications in order to detect
potential bottlenecks.

In our second experiment suite, we evaluated the overhead of replication for different
components and component combinations. We considered the following cases:

 Test 1: No database access takes place.
 Test 2: Database access (update) takes place but no conflicts occur at the

database. That is, different clients access different tuples.
 Test 3: Database access takes place and all transactions conflict. That is all

requests access the same tuple.

 14

0

50

100

150

200

250

300

350

400

1 3 6 9 12 15 18 21 24 27 30 33 36

Number of clients

N
um

be
r o

f t
ra

ns
ac

tio
ns

 (p
er

 s
ec

on
d) Replicated Jboss

Non-Replicated Jboss

0

5

10

15

20

25

30

35

40

45

50

1 3 6 9 12 15 18 21 24 27 30 33 36

Number of clients

R
es

po
ns

e
Ti

m
e

(m
s)

Replicated Jboss
Non-Replicated Jboss

(a) Response Time (b) Throughput

Figure 11, Component Analysis for No database Access

In Test 1, a request triggers the execution of a single method of an SFSB. Tests 2 and 3
have two different versions. In the first, a request executes only on one SFSB which
makes the database call. In the second, a request calls a SFSB, which calls an EB to
access the database.

The main configuration variable is the number of clients. Each client is configured to
submit 10 requests per second. However, since a client does not submit a new request
before it receives the response for the previous request, if the execution time is longer
than 100 ms, the real injection rate is smaller than 10/sec.

Test1: No database access. Figure 11 shows (a) the average response time and (b) the
throughput achievable with increasing number of clients. Response times increase
slowly for both the replicated and non-replicated system. Below the saturation point, the
replication algorithm (including the framework) has an overhead of around 4 ms. This is
very low in total numbers, but means an overhead of around 100% for medium number
of clients since response times are generally very small. This is the worst case scenario
for our algorithm since it contains only SFSBs which all must be replicated. At 24
clients, response times increase sharply due to CPU saturation, and the final saturation
is after 33 clients. The non-replicated system does only saturate at around 66 clients
again due to CPU overhead. Since the system is CPU bound, and the non-replicated
system takes half the time to execute one request compared to the replicated system, it
can execute double as many requests before saturation. There are two solutions to
improve the results of the replicated system. The first is to improve the implementation
of the algorithm (e.g., data structures, access paths). This, however, can only succeed to
a certain point. After that, alternative replication strategies have to be found, e.g., lazy
replication.

 15

0

50

100

150

200

250

1 3 6 9 12 15 18 21 24 27 30 33 36

Number of clients

N
um

be
r o

f t
ra

ns
ac

tio
ns

 (p
er

 s
ec

on
d)

Replicated Jboss (SFB)
Non-Replicated Jboss (SFB)
Replicated Jboss (SFB+EB)
Non-Replicated Jboss (SFB+EB)

0

20

40

60

80

100

120

140

1 3 6 9 12 15 18 21 24 27 30 33

Number of clients

R
es

po
ns

e
Ti

m
e

(m
s)

Replicated Jboss (SFB)

Non-Replicated Jboss (SFB)

Replicated Jboss (SFB+EB)

Non-Replicated Jboss (SFB+EB)

(a) Response Time (b) Throughput

Figure 12, Component Analysis for conflict-free database access

Test 2: Conflict-free database access. Figure 12 shows the results of test 2, in which
transactions access the database but concurrent transactions never conflict. The figure
contains graphs both for the SFSB only and SFSB/EB combinations. Let's first have a
look at the SFSB only case. Compared to the figure (a) for no database access, response
times increase more steeply, and are generally higher. This is due to the database access.
When the number of clients is smaller than 15, the overhead of the replication algorithm
is stable at around 15 ms. The total time spent in the replication algorithm is higher than
with no database access (4 ms) because the marker has to be inserted into the database
(if a transaction does not update the database, no marker is inserted). In this scenario, 15
ms only means an overhead of 20% for medium client numbers since transaction
execution is generally long. With more than 15 clients, the time spent in the replication
algorithm increases linearly with the number of clients and the throughput increases
only very slowly. At 15 clients, the CPU overhead is around 85%. After that, it does not
increase fast because the system always waits for operations at the database to complete.
The saturation point is at 22 clients. The non-replicated server reaches saturation with
33 clients.

When database access is filtered through EBs, response times both for the non-
replicated and the replicated system are generally higher due to the EB overhead.
However, the relative performance is similar to the SFSB only case.

The conclusion is the easy observation that if the original system has high execution
times, then the overhead of the replication algorithm has not such a big relative effect
than with small execution times.

 16

(a) Response Time (b) Throughput

Figure 13, Component Analysis for conflicting database access

0

100

200

300

400

500

600

700

1 3 6 9 12 15 18 21 24 27

Number of clients

R
es

po
ns

e
Ti

m
e

(m
s)

Replicated Jboss (SFB)

Non-Replicated Jboss (SFB)

0

5

10

15

20

25

30

35

40

45

50

1 3 6 9 12 15 18 21 24 27 30

Number of clients

Nu
m

be
r o

f t
ra

ns
ac

tio
ns

 (p
er

 s
ec

on
d)

Replicated Jboss (SFB)

Non-Replicated Jboss (SFB)

Test 3: Conflicting database access. Figure 13 shows the results when all transactions
conflict at the database. We only present the SFSB only case, since the effect of using
EBs is similar to test 2. Generally, response times of this test are much larger than in
test 2 due to the long blocking times at the database. They increase sharply with the
number of clients for both replicated and non-replicated case. The difference between
replicated and non-replicated system is bigger than in test 2 and also increases faster
than in test 2. The reason is that the replication algorithm generally increases the
execution time for each transaction. Assume transaction T1 holds a lock and T2 and T3
wait for the lock. The time T1 needs longer to finish due to replication is also added to
T2's and T3's execution time. Additionally, the longer execution time of T2 is added to
T3's execution time. This means, waiting times are cumulative. We can also see that the
maximum throughput in this test is only around 1/4 of the one in test 2 for both the
replicated and non-replicated system due to the blocking.

As a conclusion, although the CPU is not saturated, the CPU overhead of replication
limits its performance. Although the response time increase is due to longer waiting
times at the database, it is caused by the computation overhead.

1.1.1.3 Via the Back Tier
An analysis of the scalability and overall performance of the Middle-R system was
undertaken by varying the number of sites and the load (see Appendix 1). This analysis
was performed on a cluster of 15 SUN Ultra-5_10 workstations connected to a fast
Ethernet network. The analysis consisted of performing the desired transaction
workloads, on the Middle-R system, where payloads were carefully constructed to have
the desired ratio of update to query transactions, with the queries ranging from
accessing the entire table to accessing single data items.

Six sets of experiments were conducted. In the first four experiments each transaction
only accessed a single basic conflict class and the experiments focused on issues like
scalability, response time behavior, and communication overhead. Experiment five
analysed the behavior of the system when transactions accessed more than one basic

 17

conflict class. The first five experiments used the REORDERING algorithm. The last
experiment compared abort rates of both NODO and REORDERING.

The following conclusions were drawn:

• When compared with a standard distributed locking, that does not scale at all,
the Middle-R system proved that it is possible to scale by combining locking
with a group communication based solution.

• Middle-R showed that it is possible to scale with high ratios of updates unlike
other middleware-based approaches in which there was little scalability.

• Middle-R showed that by exporting writeset acquisition and setting services it
becomes possible to attain scalable replication at the middleware level, whilst
decoupling the replication logic from the regular transaction processing logic.

• The scalability gains were both in terms of throughput and latency. That is,
throughput was not improved by trading off latency.

• The communication overhead of Middle-R was analysed and it was found that
communication was not a bottleneck to performance.

1.1.1.4 Highly available advanced transaction support
Long running activities cannot rely on ACID transactions since their long duration and
are typically based on advanced transaction support. However, their long duration
becomes an issue in terms of availability. A replication algorithm within the adapt
framework has been developed for long running activities that exhibits high availability,
that is, in which in the advent of failures, long running activities are not aborted and
recreated upon failover. The performance of this support for long running activities has
been evaluated and compared to the non-replicated case. The used replication model
differs from the one used for ACID based transactions and resorts to vertical replication,
in which pairs of application servers and databases are replicated.

Figure 14.

 18

Since there are no existing benchmarks for advanced transactions, a specific benchmark
was developed based on an e-shop. The below figure shows the structure of the
advanced transactions. More details are provided in Appendix 11.

Figure 15.

The benchmark was instrumented by resorting to the ECPerf client and adjusting it to
the target application. The results of the benchmark showed that the replication protocol
had a reasonable overhead when compared to the performance of the non-replicated
execution. In the below figure, it can be seen the performance of the approach in terms
of latency and throughput.

0

100

200

300

400

500

600

0 1 2 3 4 5 6 7 8 9 10 11

Injection Rate (per second)

B
B

o
p

s/
M

in

Non-Rep. App.
Rep. App.
Target

Figure 16.

 19

0
100
200
300
400
500
600
700
800
900

1000
1100
1200
1300
1400
1500
1600
1700
1800
1900
2000

0 1 2 3 4 5 6 7 8 9 10 11
Injection Rate (per second)

R
e
sp

o
n

se
 T

im
e
 (

m
s)

Non-Rep. App.
Rep. App.

Figure 17.

1.1.2 Composite Service Support Experiments
The performance, scalability and adaptability of the composite service execution engine
were determined by performing a series of experiments. These experiments used the
following set of process definitions that exercised differing characteristics of the engine.

• “A long chain” of serial executed empty (null operation) tasks were used to
determine the coordination latency of the coordination engine (Volatile Storage).
The results from this experiment were as follows:

Sequence
Length
(tasks)

1 5 10 15 20 25

Execution
Time (s) < 0.001 0.005 0.011 0.016 0.027 0.032

• “Single empty (null operation) tasks” were used to determine the average
throughput and average latency involved in initiating a task. The results of this
experiment are presented in the following two graphs. In the Figures below, the
“navigator” should be interpreted as the number of replicas of the engine as it
runs distributed on a cluster.

0

20

40

60

80

100

120

140

160

0 5 10 15 20 25
Number of Navigators

Th
ro

ug
hp

ut
(ta

sk
s/

se
co

nd
)

Number of
concurrent
processes

64
128
256
512
1024
2048

Processes of 10 parallel tasks with persistent storage

 20

0

50

100

150

200

250

300

350

400

0 5 10 15 20 25
Number of Navigators

Th
ro

ug
hp

ut
(ta

sk
s/

se
co

nd
)

Number of
concurrent
processes

64
128
256
512
1024
2048

Processes of 10 parallel tasks with volatile storage

Figure 18, Scalable execution: average throughput of the
system using an increasingly large number of parallel
navigators running tasks lasting 0 seconds

• “Single long idea task” were used to determine the scalability of the engine with
respect to coordinating large numbers of tasks. The results of this experiment are
presented in the following graphs.

1
64

128
256
512
1024
2048

10

100

1000

10000

0 5 10 15 20 25

Number of Navigators

Ba
tc

h
Ex

ec
ut

io
n

Ti
m

e
(s

ec
on

ds
)

Configuration: storage
Task duration: seconds

Persistent
10

10

100

1000

10000

0 5 10 15 20 25

641
128
256
512
1024
2048

Number of Navigators

Ba
tc

h
Ex

ec
ut

io
n

Ti
m

e
(s

ec
on

ds
)

Configuration: storage
Task duration: second

Persistent
1

1
64

128

256
512
1024
2048

10

100

1000

10000

Configuration: storage
Task duration: seconds

Volatile
10

0 5 10 15 20 25

Number of Navigators

Ba
tc

h
Ex

ec
ut

io
n

Ti
m

e
(s

ec
on

ds
)

64
128
256
512
1024
2048

Ba
tc

h
Ex

ec
ut

io
n

Ti
m

e
(s

ec
on

ds
)

10

100

1000

10000

0 5 10 15 20 25

Number of Navigators

Configuration: storage
Task duration: second

Volatile
1

1

Figure 19, Scalable Execution: Execution time of batches processes having 10 tasks and
sequential control flow topology as a function of 4 variables: 1) the number of navigators
(X-Axis), the workload size (Z-Axis), the duration of the tasks and the system configuration
(volatile or persistent storage)

1.2 Strategy for Evaluating Functional Capabilities and Attributes
The evaluation of the main functional goals of the ADAPT project has been done in the
context of two complementary approaches: firstly the construction of a proof-of-concept
application [1][2] on the ADAPT platform and secondly the analyses of the
achievements of the project in the areas that were key technical goals.

 21

1.2.1 Proof-of-concept implementation
Whilst the ADAPT platform was always intended to be for “programming in the large”,
the construction of a very large application to test “programming in the large” with the
ADAPT platform was always beyond the financial resource of the project. So, the
proof-of-concept implementation was based on the implementation of the WS-I Sample
Applications, which in turn is based on a supply chain management scenario. This
application involves a customer system (referred to as the demo system) making
requests on a retailer system, which in turn makes requests on a set of manufacturing
systems. The interactions between these systems are performed by web service
invocations. The interaction patterns range from simple synchronous and asynchronous
invocations to callbacks, providing an interesting set of scenarios.

However, the construction of this application confirmed the observation that the
ADAPT platform is not suitable for “programming in the small”. Despite the fact that
the application consisted of about 20 persistent entities, 24 basic services and 6
composite services, it was not large enough to meaningfully utilize the ADAPT
platform. Because of this, the applications’ components had to be implemented at a
level of granularity that was one level higher than would normally have been
appropriate. Hence, what would have been basic services became composite services
and objects became basic services. This resulted in a very elaborate design that was not
merited by the complexity of the application. The initial cause of this was the original
design decision that basic services would not be permitted to invoke other services.
Whilst this greatly simplified the implementation of the basic service it was an onerous
restriction for the application designer. The original design decision also resulted in the
creation of a large number of basic services.

The two central goals of the web service replication were to provide consistent
invocation failover, and management of the session state between the replicas. It turned
out that this application did not naturally have any session state that needed to be
maintained. Interactions-based web-pages are often structured as a series of steps, one
following on from the next. In such an interaction a session state is very useful for
maintaining the state of the interactions. But for the web service based interaction, the
nature of the interaction between the “invoker” and “service” is more complicated, the
main reason being that the “invoker” could be multi-threaded, these threads possibly
being caused by invocation on the “invoker”. The result is that the series of invocations
from the “invoker” could be unrelated, and hence no session state is appropriate, not
even a security session. For such interactions a context, either explicit or implicit, would
be more appropriate. For the demonstrator application the context, such that it was,
consisted of explicit parameters to invocations, that mapped directly to database entries.
So, whilst it could have been possible to build an application that did rely on session
state, this application did not.

To evaluate the service description capacities of the ADAPT platform, the interaction
specified within the WS-I Sample Applications were formulated using the ADAPT
interaction constraints language. The resulting definitions were comparatively concise
and easy to construct. This could be a result of the interaction within the WS-I Sample
Application being inline with the type of interaction that was envisioned when the
interaction constraints language was designed. A fragment of an interaction constraints
specification, from the WS-I Sample Application, is given below:

 22

<ic:invokeOutput operation="poSubmit" portType="manufacturerCallPort"
 participant="Manufacturer" participantPortType="manufacturerPort">
 <ic:choice>
 <ic:sequence>
 <ic:invokeInput/>
 <ic:serviceInput operation="snSubmit" portType="warehouseCallbackPort"
 participant="Manufacturer"
 participantPortType="warehouseCallingbackPort">
 <ic:choice>
 <ic:serviceOutput/>
 <ic:serviceFault name="CallbackFault"/>
 <ic:serviceFault name="ConfigurationFault"/>
 </ic:choice>
 </ic:serviceInput>
 </ic:sequence>
 <ic:sequence>
 <ic:choice>
 <ic:invokeFault name="POFault"/>
 <ic:invokeFault name="ConfigurationFault"/>
 </ic:choice>
 <ic:serviceInput operation="processPOFault"
 portType="warehouseCallbackPort" participant="Manufacturer"
 participantPortType="warehouseCallingbackPort">
 <ic:choice>
 <ic:serviceOutput/>
 <ic:serviceFault name="CallbackFault"/>
 <ic:serviceFault name="ConfigurationFault"/>
 </ic:choice>
 </ic:serviceInput>
 </ic:sequence>
 </ic:choice>
 </ic:invokeOutput>
</ic:protocolType>

Process description capabilities of the ADAPT platform proved to be capable of
specifying the composite service that was required by the demonstrator. This is
remarkable given that the designers of the WS-I Sample Application did not originally
intend parts of the application to be implemented as a workflow system managed
process. The only pragmatic concession that was made to the composite service design
was that some additional operations were added to some basic services to create and
transform some of the messages types. This could have been done within the ADAPT
process definition language, but would have been cumbersome, because some of the
messages contained a large number of fields.

1.2.2 Service description goal
The service description goal of the ADAPT project was to investigate supplementing
the usual interface description of services, with additional information that could be
used to make the design and management of the service easier. The ADAPT project
produced three main results in this area: (i) interaction constraints language (ii)
transactional semantics, which both aid in the design phase and (iii) performance
properties, which aid at runtime.

The transactional semantics allowed the macro behavior of operation invocations to be
specified, for example, if an operation had a corresponding compensation operation or if
the invocation of the operation implied that a 2-phase commit protocol would need to be
performed later. The transactional semantics specification consisted of a fairly
comprehensive set of possibilities, but the ADAPT project didn’t specify any new
transaction models or investigate how operations with different transactional semantics
could be composed.

 23

The interaction constraints allowed the context, within which it is appropriate for an
operation to be invoked, to be specified. For example, if a submitOrder operation was
expected only to follow a getCatalog operation, this can be specified. The initial goal
was to specify an interaction constraints language in XML which was expressive
enough to describe more interactions. Judging by our experience specifying the WS-I
Sample Application interactions, this appears to have been successful. Following the
specification of the interaction constraints language its use to analysis composite
services was investigated. It became clear that the language could be mapped to PI-
Calculus and Promela. This allowed tools such as Spin to be used to analyse the
composition of services, identifying incompatibilities in the requirements of the
component services.

The area of interaction constraints has over the last three years become an area of
considerable interest to industry and standards bodies. Shortly after the start of the
ADAPT project the OASIS standards body chartered the WS-CDL working group to
produce a choreography description language for Web-services. This group initially
made little progress, so when the ADAPT interactions constraints language
specification was required, at month 12 of the project, we had to produce a separate
language. It is regrettable that we weren’t able to participate in the standards effort more
actively.

To allow runtime support for quality of service, performance properties were provided.
When combined with the sensor system, this allowed composite services to monitor
their component basic service, and alter their behavior if required, for example, making
use of lightly loaded services.

1.2.3 Composability goal
The projects’ achievements in the area of composability relate to two areas: (i) the
design time use of service description (to capture information required to construct
composite application) and (ii) the use of JOpera to allow the flexible composition of
services (using the workflow systems capabilities to change the nature of the process
and its support of integrating services at runtime).

1.2.4 Configuration goal
The ADAPT project did not, in the end, concentrate any effort on configurable software,
that is to say, software whose behavior can be changed radically by changes to the
configuration rather than changes to the code.

1.2.5 Adaptation goal
The two areas of adaptation that were addressed during the ADAPT project were:
runtime adaptation to failure provided by the Basic Service Platform, and design time
adaptation to service interfaces provided by the composite service execution engine.

The adaptation to failure supported by the Basic Services Platform provides failover
between replicas and ensures that the session state maintained by the replicas are
constant across the set of replicas. This is a powerful consistency property that many
other systems do not possess. Converting a non-replicated service into a replicated
service is a comparatively simple task; all that is required is a simple change to the
service’s deployment descriptor. The changes required for JBoss to support replicated
services are more complicated, involving deployment and configuration of additional

 24

software and the use of a spread daemon. However, given that the changes need only be
done once per machine then the task is not too much of an overhead.

The JOpera process manager provides support adapting the small differences in the
syntactic and semantics between implementation of services [3][4]. This means that the
ADAPT platform can, to a certain extent, allow inter-working of services that were not
originally designed to work together. Of course if syntactic or semantic differences are
too great then this would not be possible. The limits of what is possible with this
approach have not been explored by the ADAPT project.

1.2.6 Process definition goal
One of the goals of the ADAPT project was to be able to flexibly specify processes so
that the composite services could be easily constructed. When the project started there
were numerous process definition standards, specifications seeking to be standards and
non-standard specifications being promoted by industry. So initially it was not clear
which of these process definition specifications, if any, would be suitable for the
project. As a result, given the requirement to have a process definition language defined
for a 12 month deliverable, the partners were forced to produce the ADAPT
composition language, based on their experience in the field.

After a while BPDL4WS (which was later renamed WS-BPDL) became the leading
standard in the area of defining processes between web services, but it was not initially
clear what the legal status of the specification was or how stable the specification would
be, as it was still being changed through the standards process. This standards process
remains a protracted one, and it is still not clear if WS-BPEL will be adequate for the
wide range of needs that it could be used for. Certainly, in its present from, it has
limitations when it comes to using it for building composite services, of the type the
ADAPT composition language was designed for. This is because the underling process
model of WS-BPEL is the summation of a number of earlier specifications, which
makes it hard to formally reason about the behavior of the resulting composite service.

It was decided to use JOpera as the composite service execution engine, this does not
use the ADAPT composition language, but it does share a very similar underlying
model.

1.2.7 Replication goal
The project concentrated its efforts on the replication of basic services, not the
replication of composite services. This is not a real weakness of the ADAPT platform,
because of the nature of composite services is to be long duration and containing long
periods of inactivity. This means that the composite service engine’s ability to restart
processes from the point that they had reached is therefore sufficient.

The replication of basic services was based around passive replication, so providing
increased overall throughput but slower recovery failure than would be achieved using
an active replication strategy. Given the application types and environments which the
ADAPT platform is intended for, high load with rare failures, this seems a sensible
approach for the ADAPT project.

1.2.8 Security goal
The ADAPT project did not, in the end, concentrate any effort on security.

 25

1.2.9 Transaction models goal
The ADAPT project did not, in the end, concentrate on creating new transactional
models, but rather put its efforts into building an advanced transaction engine and
participating in standards bodies which are developing industry backed standards such
as WS-CAF. The absence of a single standard for transaction coordination and a non-
proprietary royalty free standard for the industry continues to be a roadblock to progress
in the area. ADAPT has participated strongly in this standards arena putting great efforts
behind the Web Services Composite Application Framework (WS-CAF) specification.
Making progress has been difficult due to the set of competing specifications published
by IBM/Microsoft/BEA on WS-C/T. However, during the last few months of the
project, ADAPT, through Arjuna, has managed to continue to exert influence on the
future roadmap for WS-T and achieved a significant breakthrough on 16 August 2005
when IBM and Microsoft invited Arjuna to be an author to their own specifications -
Web Services Atomic Transaction (WS-AtomicTransaction) – This move brings the
merger of the specifications much closer and will ensure that there will be a single
standard for transaction coordination and that the standard will be non-proprietary and
royalty free.

 26

2 References
[1] “Demonstrator Specification”, ADAPT project (IST-2001-37126), Deliverable

D17, March 2004.

[2] “Demonstrator”, ADAPT project (IST-2001-37126), Deliverable D20,
September 2005.

[3] “Design and Evaluation of an Autonomic Workflow Engine”, T. Heinis, C.
Pautasso and G. Alonso, Proceedings of the 2nd International Conference on
Autonomic Computing (ICAC-05), Seattle, Washington, June 2005.

[4] “Autonomic Execution of Service Compositions”, C. Pautasso, T. Heinis and G.
Alonso , Proceedings of the 3rd International Conference on Web Services
(ICWS 2005), Orlando, Florida, July 2005.

 27

Appendixes

The following documents, published by members of the ADAPT project, give further
details of the evaluation of specific parts of the overall ADAPT platform. These
documents are:

Appendix 1

• MIDDLE-R: Consistent Database Replication at the Middleware Level, Marta
Patio-Martiñez1, Ricardo Jiménez-Peris1, Bettina Kemme2 and Gustavo Alonso3,
ACM Transactions on Computer Systems (TOCS). In Press.

Appendix 2

• Middleware based Data Replication providing Snapshot Isolation, Yi Lin2,
Bettina Kemme2, Marta Patiño-Martiñez1 and Ricardo Jiménez-Peris1, ACM
SIGMOD Int. Conf. on Management of Data. Baltimore, Maryland, USA. Jun.
2005.

Appendix 3

• A Framework for Prototyping J2EE Replication Algorithms, Özalp Babaoğlu14,
Alberto Bartoli5, Vance Maverick4, Simon Patarin4, Jakša Vučković4 and Huaigu
Wu2, International Conference on Distributed Objects and Applications (DOA)
2004, pages 1413-1426.

Appendix 4

• Consistent Data Replication: Is it feasible in WANs? Yi Lin2, Bettina Kemme2,
Marta Patñio-Martiñez1 and Ricardo Jiménez-Peris1, Europar Conf., Lisbon
(Portugal), August 2005.

Appendix 5

• Adaptive Middleware for Data Replication, J. M. Milan-Franco1, R. Jiménez-
Peris1, M. Patiño-Martiñez1, and B. Kemme2, ACM/IFIP/USENIX Middleware
Conference, Toronto (Canada). Oct. 2004.

Appendix 6

• Eager Replication for Stateful J2EE Servers, Huaigu Wu2, Bettina Kemme2, and
Vance Maverick4, Int. Symposium on Distributed Objects and Applications
(DOA) 2004.

Appendix 7

• Fault-tolerance for Stateful Application Servers in the Presence of Advanced
Transactions Patterns, Huaigu Wu2 and Bettina Kemme2, Proc. Int. Symposium
on Reliable Distributed Systems (SRDS) 2005.

Appendix 8

• JOpera: a Toolkit for Efficient Visual Composition of Web Services, C.
Pautasso3 and G. Alonso3, International Journal of Electronic Commerce (IJEC),
9(2):107-141, Winter 2004/2005

 28

Appendix 9
• Design and Evaluation of an Autonomic Workflow Engine, T. Heinis3, C.

Pautasso3 and G. Alonso3, In: Proceedings of the 2nd International Conference
on Autonomic Computing (ICAC-05), Seattle, Washington, June 2005.

Appendix 10

• Autonomic Execution of Service Compositions, C. Pautasso3, T. Heinis3, and G.
Alonso3, In: Proceedings of the 3rd International Conference on Web Services
(ICWS 2005), Orlando, Florida, July 2005.

Appendix 11

• Highly Available Long Running Transactions and Activities for J2EE
Applications, Francisco Perez, Jaksa Vuckovic, Marta Patiño-Martinez1, and
Ricardo Jimenez-Peris1. Technical Report. Universidad Politecnica de Madrid.
December 2004.

(1) Facultad de Informática, Universidad Politécnica de Madrid (UPM), Madrid, Spain
(2) School of Computer Science, McGill University, Montreal, Canada
(3) Department of Computer Science, Swiss Federal Institute of Technology (ETHZ)

Zürich, Switzerland
(4) Università di Bologna, Bologna, Italy
(5) Università degli Studi di Trieste, Trieste, Italy

